数学基礎演習2 · 演習問題

—A.1—

[数学要論B]

問 A.1.1(a), A.1.2(a) は(TAによる)解答例付きで、発表対象外です。

数列の極限(ϵ -N 論法による)

問**A.1.1**(a-c) 実数列 $\{a_n\}$ は $n \to +\infty$ のとき極限値 α に収束するとする。このとき、次を示せ。

- (a) $a_n \neq 0 \ (\forall n \in \mathbb{N})$ かつ $\alpha \neq 0$ のとき、実数列 $\left\{\frac{1}{a_n}\right\}$ は収束して、その極限値は $\frac{1}{a_n}$ である。
- (b) $a_n > 0 \ (\forall n \in \mathbf{N})$ のとき、実数列 $\{\sqrt{a_n}\}$ は収束して、その極限値は $\sqrt{\alpha}$ である。
 - (c) 実数列 $\{a_n^3\}$ は収束して、その極限値は α^3 である。

注意: $\lim_{n o +\infty} a_n b_n$ の公式を用いた解答は不可。

問**A.1.2**(a-b) 二つの実数列 $\{a_n\}$, $\{b_n\}$ から、新しい実数列 $\{c_n\}$ を、次式により与えることにする。 $\{a_n\}$, $\{b_n\}$ が共に収束するとき、 $\{c_n\}$ は収束するか否か判定せよ。(収束すると思うなら証明し、収束しないと思うならその例を挙げよ。)

(a)
$$c_n = \max\{a_n, b_n\} \ (\forall n \in \mathbf{N})$$

(b)
$$c_n = |a_n - b_n| \ (\forall n \in \mathbf{N})$$

問**A.1.3** $0 < a_0 \le b_0$ とする。

$$a_n = \sqrt{a_{n-1}b_{n-1}}, \quad b_n = (a_{n-1} + b_{n-1})/2 \quad (\forall n \in \mathbf{N})$$

により与えられる実数列 $\{a_n\}$, $\{b_n\}$ は共に収束して、その極限値は一致することを示せ。

問**A.1.4** 三つの実数列 $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ において、

$$a_n \le c_n \le b_n \qquad (\forall n \in \mathbf{N})$$

が成り立つとする。いま $\{c_n\}$ が収束するならば、

$$\limsup_{n \to +\infty} a_n \le \liminf_{n \to +\infty} b_n$$

が成り立つことを示せ。また $\{c_n\}$ が収束しないとき、この不等式が成り立たないような例を一つ挙げよ。

問**A.1.5** 有界な実数列 $\{a_n\}$, $\{b_n\}$ について、次のことを示せ。

$$\limsup_{n \to +\infty} (a_n + b_n) \le \limsup_{n \to +\infty} a_n + \limsup_{n \to +\infty} b_n$$
$$\liminf_{n \to +\infty} (a_n + b_n) \ge \liminf_{n \to +\infty} a_n + \liminf_{n \to +\infty} b_n$$

解答例

問**A.1.1**(a) まず、十分大きなすべての $n \in \mathbb{N}$ に対し、

$$|a_n| \ge \frac{|\alpha|}{2}$$

となることを示す。

実数列 $\{a_n\}$ が α に収束するので、

$$\forall \epsilon > 0, \exists N_1(\epsilon) \in \mathbf{N} \text{ s.t. } n \geq N_1(\epsilon) \Rightarrow |a_n - \alpha| < \epsilon$$

上の式で ϵ は任意なので $\epsilon = \frac{|\alpha|}{2} (>0)$ とすると、任意の $n \geq N_1\left(\frac{|\alpha|}{2}\right)$ に対し、

$$|a_n| \ge ||\alpha| - |a_n - \alpha|| \ge |\alpha| - \frac{|\alpha|}{2} = \frac{|\alpha|}{2}$$

よって、
$$n \ge N_1\left(\frac{|\alpha|}{2}\right)$$
 のとき、

$$|a_n| \ge \frac{|\alpha|}{2}$$

が成り立つ。

また、実数列 $\{a_n\}$ が α に収束するので、

$$\forall \epsilon > 0, \exists N_2(\epsilon) = N_1\left(\frac{|\alpha|^2}{2}\epsilon\right) \in \mathbf{N} \text{ s.t.}$$

$$n \ge N_2(\epsilon) \Rightarrow |a_n - \alpha| < \frac{|\alpha|^2}{2}\epsilon$$

$$N = \max\left\{N_1\left(\frac{|\alpha|}{2}\right), N_2(\epsilon)\right\}$$
 とすると、任意の $n \geq N$ に対し、

$$\left|\frac{1}{a_n} - \frac{1}{\alpha}\right| = \frac{|\alpha - a_n|}{|a_n||\alpha|} \le \frac{|\alpha - a_n|}{\frac{|\alpha|}{2}|\alpha|} < \frac{\frac{|\alpha|^2}{2}\epsilon}{\frac{|\alpha|}{2}|\alpha|} = \epsilon$$

よって、実数列 $\left\{ rac{1}{a_n}
ight\}$ は収束し、その極限値は $rac{1}{lpha}$ である。

問**A.1.2**(a) $\lim_{n\to+\infty}a_n=\alpha, \lim_{n\to+\infty}b_n=\beta$ とする。

(i) $\alpha < \beta$ のとき $0 < \epsilon' < \frac{\beta - \alpha}{2}$ となるような任意の ϵ' をとると、 $\lim_{n \to +\infty} a_n = \alpha, \lim_{n \to +\infty} b_n = \beta$ なので、

$$\exists N_1 \in \mathbf{N} \text{ s.t. } n \geq N_1 \Rightarrow |a_n - \alpha| < \epsilon',$$

 $\exists N_2 \in \mathbf{N} \text{ s.t. } n \geq N_2 \Rightarrow |b_n - \beta| < \epsilon'$

が成り立つ。このとき、 $N_3 = \max\{N_1, N_2\}$ とおくと任意の $n \geq N_3$ に対し、

$$a_n < \alpha + \epsilon' < \frac{\alpha}{2} + \frac{\beta}{2} < \beta - \epsilon' < b_n$$

なので、 $c_n = \max\{a_n, b_n\} = b_n$ である。

任意に $\epsilon > 0$ をとると、 $\lim_{n \to +\infty} b_n = \beta$ なので、

$$\exists N_4 \in \mathbf{N} \text{ s.t. } n \geq N_4 \Rightarrow |b_n - \beta| < \epsilon$$

である。 $N = \max\{N_3, N_4\}$ とおくと、任意の $n \geq N$ に対し、

$$|c_n - \max\{\alpha, \beta\}| = |b_n - \beta| < \epsilon$$

が成り立ち、 $\lim_{n\to +\infty} c_n = \max\left\{\lim_{n\to +\infty} a_n, \lim_{n\to +\infty} b_n\right\}$ である。

(ii) $\alpha > \beta$ のとき、(i) と同様の議論により、

 $\lim_{n\to+\infty}c_n=\max\left\{\lim_{n\to+\infty}a_n,\lim_{n\to+\infty}b_n\right\}$ が成り立つ。

(iii) $\alpha = \beta$ のとき $\lim_{n \to +\infty} a_n = \alpha$, $\lim_{n \to +\infty} b_n = \alpha$ なので、任意に $\epsilon > 0$ をとると、

$$\exists N_1 \in \mathbf{N} \text{ s.t. } n \geq N_1 \Rightarrow |a_n - \alpha| < \epsilon,$$

 $\exists N_2 \in \mathbf{N} \text{ s.t. } n \geq N_2 \Rightarrow |b_n - \alpha| < \epsilon$

である。 $N = \max\{N_1, N_2\}$ とおくと、任意の $n \geq N$ に対し、

$$\alpha - \epsilon < a_n < \alpha + \epsilon, \alpha - \epsilon < b_n < \alpha + \epsilon$$

が成り立つ。よって、 $\alpha - \epsilon < \max\{a_n, b_n\} < \alpha + \epsilon$ が成り立つ。 以上より、任意の n > N に対し、

$$|c_n - \max\{\alpha, \beta\}| = |\max\{a_n, b_n\} - \alpha| < \epsilon$$

が成り立ち、 $\lim_{n\to+\infty}c_n=\max\left\{\lim_{n\to+\infty}a_n,\lim_{n\to+\infty}b_n\right\}$ である。 (i),(ii),(iii)より、実数列 $\left\{c_n\right\}$ は $\max\left\{\lim_{n\to+\infty}a_n,\lim_{n\to+\infty}b_n\right\}$ に収束する。