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Abstract

This is a record of Abe’s lectures on Koszul rings and the Koszul duality during the week of 2017/10/16-
20, with a few more details and references added. Applications to modular representations of Lie algebras
or to the BGG category are not included. We have divided each section numbered by the days of the week
the lectures were delivered into subsections.

HBEH Preliminaries

For a ring A we let AMod denote the category of left A-modules. Unless otherwise specified
by an A-module we will mean a left A-module. The first subsections H.1-6 review some basics
of homological algebras, before we introduce the derived category of A, precisely, of the category
of A-modules.

H.1. Let G be a finite group and k an algebraically closed field of characteristic 0. Recall

Mascheke’s theorem [fRER, Th. 20.1, p. 119]: Any k[G]-module is semisimple, i.e., is a
direct sum of simples.

If Vand V' are two simple k[G]-modules, by Schur’s lemma

: ~ /
K[GMod(V, V') = {k V=V,
0 else.
Thus, the category k[G]Mod is determined by the number of simples, which is equal to the
number of conjugacy classes of G [CR, 3.37, p. 52]. Note, however, that if G’ is another finite
group with the same number of conjugacy classes, that may not infer an isomorphism between
k[G] and k[G'] as k-algebras; e.g., G may be abelian while G’ not.

Thus, 2 non-isomorphic rings may have equivalent module categories. There are even more
fascinating phenomena in derived categories, which we presently introduce.



H.2. In what follows throughout H, A will denote a unital ring.

Definition: A compler (M*®,d®*) of A-modules consists of a data M' € AMod and d' €
AMod(M*, M), i € Z, such that d' o d* = 0. The i-th cohomology of (M®,d*), i € Z,
is H{(M®) = (kerd')/(imd™1).

Roughly speaking, a derived category is where 2 complexes be isomorphic if their cohomology
agree. If 2 rings are isomorphic, their module categories are equivalent, and hence also their
derived categories, but not conversely in general. Koszul rings and Koszul duality provide a
general framework for derived equivalences.

H.3. Extensions

Definition: We say a sequence L Iy M % N in AMod is exact off imf = kerg. Thus, a
sequence 0 — L Iy M % N 0 is exact iff fis ingective, imf = ker g, and g is surjective, in
which case we call the sequence short exact.

We let Ext' (N, L) denote the set of short exact sequences 0 — L — M — N — 0 modulo
an equivalence relation such that that0 - L —- M — N =0 and 0 — L - M — N — 0 are
equivalent iff there is a commutative diagram, CD for short in the following,

0 s L M s N > 0
s L

in which case M ~ M’ by the 5-lemma.

0 > M’ >y N > 0,

E.g. Let A = k[z] be the polynomial ring in z over a field k. Let L = N =k with x acting by

0, and let 0 — L o M % N = 0 be a short exact sequence. Thus, dim M = 2. If vi, v, € M
with v; = f(1) and g(ve) = 1, then (v1,v,) forms a k-linear basis of M. One has

avp=2f(1) = f(zel)=f(0)=0, g(zvz)=wg(vs) =x01=0.
Then zvy € kerg = imf, and hence xv, = Ay I\ € k. Thus, the matrix of x on M with
respect to the basis (v, vy) is given by (8 [))\) There follows a bijection

Exty(N, L)~k via “0—=L—M—N-=0"— A\
H 4. One can compute Ext! more easily with projective resolutions.

Definition: We say P € AMod is projective iff Vf € AMod(M, N) surjective, Vg € AMod(P, N),

_ P
lg

L
M ——>» N.
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Proposition: (i) A free A-module is projective.

(i1) VM € AMod, 3 free P € AMod such that P — M.

Proof: (ii) Take a generating set (my|A € A) of M over A. Then P = A®* with ey — my,
VA € A, will do, where e, is a basis element (0,...,0,1,0...,0) of P with 1 in the A-th place.

H.5. Definition: A projective resolution of M € AMod is an exact sequence --- — P; —
P_i— .-+ —= F— M-—0in AMod with all P;,i € N, projective.

E.g. (i) Let A =k[z| and M = k[z|/(x) ~ k. Consider an exact sequence k[z] ER k[z]/(x) — 0
with f:a v a+ (z). As ker f = (),

0 — klz] — k[z] —— k[z]/(z) — 0

a —— ax

gives a projective resolution of k[z]/(x) ~ k.

(ii) Let A = k[z,y| the polynomial ring over k in z and y and M = klz,y]/(z,y) ~ k.

Consider an exact sequence k|x,y] LN klz,y]/(z,y) — 0 with f; : @ — a + (z,y). Then
ker fi = (x,y). Define fy : k[z,y]®2 — k[z, y] via (a,b) — az + by. One has

ker fo = {(a,b)|az + by = 0} = {(ay, —az)|a € k[z, y|} ~ k[z,y],
and hence

0 — klz,y] —— kfz,9)®* —2 K[z, 9] —L K[z, y]/(z,y) — 0

a — (ay, —ax)
forms a projective resolution of klz, y]/(z,y) ~ k.
Ex. Let n € Z. Construct a projective resolution in the following cases:
(i) A=7Z, M =Z/nZ.
(ii) A =Z[z], M = Z[z]/(n, z).

H.6. Definition: Let L, N € AMod. Take a projective resolution --- — Py 4, =) DN 50
of N and set, Vi € N,

AMod(do,L
R

\ AMod(Py, L) 2D,

Ext’ (N, L) = H(0 — AMod(P,, L) ).

For i = 1 the present definition agrees with the previous one in H.3 [Rot, Th. 7.30, p. 425].
For given an exact sequence 0 — L Iy M 2 N = 0 one obtains a CD

dy

P, -2, p > P, y N > 0
¢1 ¢0 H
0 > L f>M g>N > 0.




Then fogiody = pgodyods = 0. As f is monic, ¢ 0dy = 0, and hence ¢; € ker(AMod(ds, L)).
Define now a map

(1) “O—=L—M-— N0 [¢p] € H(AMod(P*, L)).

Conversely, given [¢] € H'(AMod(P*, L)) with ¢ € AMod(P;, L) such that ¢ o dy = 0, let M’
be the pushout of dy and ¢: M’ = (L & By)/{(¢(z), —di(x))|z € P1}. Then an exact sequence

0 s L s M’ s N s 0

(l,y) —— doy

gives an inverse to (1); define M" — M via (I,y) — f(1) + ¢o(y).

H.7. Rather than taking cohomology, however, efforts of endowing complexes themselves with
a structure lead to an introduction of derived categories.

Definition: A morphism f* : (M®,d%;) — (N°®,d%) of complexes in AMod is a family (f* €
AMod(M*, N")|i € Z) such that, Vi € Z,
i B i

Ao |
Nt —— N+l
diy

Together, the complezes of A-modules form a category, denoted C(A).

Given f* € C(A)(M*,N*) one has, Vi € Z,

HZ(M‘) ............ A N Hi(N')
I I

(ker di;)/(imdy;') —— (ker dy)/(imdyt).
We say f* is a quasi-isomorphism, qis for short, iff H(f*) is invertible Vi € Z.

J1.8. The derived category of A is a localization of C(A) at qis’. Precisely, however, we need
an auxiliary category, the homotopy category of C(A).

Definition: We say f* € C(A)(M*®,N°*) is homotopic to 0 iff Jo* € AMod(M*,N*"'), i € Z,
such that, Vi, f' = o't o die + diva o 0.

; diy ; Mi+l

M
V lfi /
O.z+1

N7 —— N
dN



Lemma: If f* is homotopic to 0, H'(f*) =0 Vi € Z.

Proof: Vm € ker d,,

fim) = (e ody, + di o o")(m) = (diy o 0')(m) € imdy .
3.9, Let Hto(M*,N*) = {f* € C(A)(M*,N*)|f* is homotopic to 0}.

Lemma: Hto(M?®, N°®) is an abelian subgroup of C(A)(M?®, N®) such that ¥V f® € Hto(M*®, N*),
Vg* € C(A)(N°®,L*), Vh* € C(A)(L*, M?*), g® o f* € Hto(M*,L*) and f* o h® € Hto(L*, N*).

H.10. Definition: The homotopy category K(A) of A has the same objects as C(A) with
morphisms

K(A)(M*,N®*) = C(A)(M*,N*)/Hto(M*,N*) VM* N* e K(A).
Ex. Check that the compositions of morphisms in K(A) are well-defined.

Remark: (i) Vf* € K(A)(M*,N*), H'(f*), i € Z, is well-defined as H'(g*) = 0 Vg* €
Hto(M*®, N*). One may thus say that f* € K(A) is a qis iff H(f*) =0 Vi € Z.

(11) There is a fully faithful functor o : AMod — K(A) such that M — (--+ - 0 — M —
0 — ...) with M placed in degree 0, with H® o 1 ~ id.

H.11. Recall the localization of commutative rings. Let R be a commutative ring and S a
multiplicative set of R: Vs,t € S, st € S. Localization of R with respect to S is S™'R =
(S x R)/ ~ with ~ an equivalence relation such that (s,a) ~ (¢,b) iff Ju € S with u(sb —
at) = 0. To see the transitivity of ~, we use the commutativity of R; if (s1,a1) ~ (s2,a2)
and (82,(12) ~ (Sg,@g), Htl,tg € S such that t1(31a2 - CL182> =0= tg(SgCLg - CL283>. Then
8182t1t2(81a3 — CL183) = s%t1t233a2 - 81t2t181a283 =0.

Let now S be the set of qis’ of K(A). We’d like to define the derived category D(A) of A to
have the same objects as K(A) with morphisms

D(A)(M*, N*) = {(s, f)| M* ¢ X* 5 N* }/ ~,

where ~ is an equivalence relation, which requires a more elaborate construction due to the
lack of commutativity.

We first define a shift functor [n], n € Z, on complexes as follows: (X°®[n])’ = X",
(dxep))’ = (=1)"di™, and for f* € C(A)(M*, N*®) we set (f[n])' = fi*t" Vi € Z [, Def.
3.4.13, p. 189]. Thus, [0] = id, [n][m] = [n+m], and H(M*[n]) = H*"(M*). The shift functors
are induced on K(A), denoted by the same letters. We show



Lemma: In K(A)

Y' ............ 5 Xl.
i qislf daCD s qis lf
XQ. T> M., XQ. T> M®.

Proof: We make use of mapping cones. The mapping cone cone(f) of f is a complex [ i
Prop. 3.4.15, p. 190] such that cone(f)’ = (X,[1])"*' @ M' = X*' @ M’ and

; : Xi+1 Xi+2
- (e Y- ) S
(f[l])z dZM flJr d?\d Mz Mi—H.

0
One thus obtains a semi-split sequence M*® i) cone(f) — X7[1], i.e., the sequence reads at
each i € Z as a split exact sequence 0 — M® — cone(f)" — (X[1])* — 0, which induces by the
snake lemma [, Lem. 4.2.21, p. 244]/[Iv, 1.6, p. 4] a long exact sequence, LES for short in
what follows, [Iv, 1.2.8, p. 9]

(10)

DR — Hi " (cone(f)) - H7LH(XP[1)) —> HY(M®) = Hi(cone(f)) - H{(X[1]) = HTY(M®) —
HZ(IAIX'IQ) H (f) Hi+1II(X10) HIWH'Hl(f)
As f € S, Hi(f) is invertible Vi € Z, and hence

(2) H'(cone(f)) = 0.

Consider next the mapping cone of (0) o g € K(A)(X3,cone(f)) to obtain a semi-split
sequence
()

cone(f) —> cone(<(1)> 0g) uo, X3[1]
and a LES
- — H7Y(X3[1]) — H'(cone(f)) — Hi(cone(((l)) 0g)) — H(X3[1]) — H(cone(f)) — ....

AS H'(cone(f)) = 0 Vz € Z, Hi(cone((*) o g)) % Hi(X3[1]) invertible. Thus, if we let
= cone ( (D) og =(10):Y*— X3 is a gis. Explicitly,

={(X H®WMDPWEX%HﬂMQMMAWIﬁ@H@Wf

i i—1 — dg@ 0
= eone((2)oq) [ 71" = =0 o (0)0g) = (—((?) ©9)" ooy )

| X X+
dy, 0 0 & S
(0 4 o | xi - xi*
—g —f —=dy o ®
M M



Let 1y =(010):Y*— X and mo = (00 1) : Y* — M*[—1] be the projections. Then
(fo(=m)) —(gos)' =—f0(010)—g'o(100)=(-g" —f0)
=(=g' = f —dy) +(00dy) =m" ody +dy om ",
and hence one has a CD in K(A)
ye —" X7

L

X3 —— M.

H.12. Given M % X; 25 N and M <;T28 X, %% N in K(A), one has from .11 a CD

y s Xy

g2 qis l51
\:f

X28—2>M

Then s; 091 = ss0 g9 € S, and hence g € S also. We now define an equivalence relation by

setting (s, f1) ~ (S2, fo) iff there is a CD in K(A) [#fif, Def. 2.4.30, p. 117]

X
2N
M If N.
s
Xo

A3 Given M <= X 5 N and N <&V % L in K(A) there is by A.11a CD

Z

L." 18

N N

Define the composite in D(A) by

N Y 5 I) o M X LN = [ME 72

H.14. We will denote M <qsi—s Z L N in D(A) by [f/s]. In particular, M <& M ENyNS

by [f/1].



Theorem [HRD, Prop. 1.3.1, p. 29]/[Gri, Th. 6.5, p. 53]: Define a functor Q :

K(A) = D(A) wia [f: M — N]+ [f/1] = [M < M -5 N,

(i) Vs € S, Q(s) = [s/1] is invertible with inverse [idas/s]:

M
M/ \M = [id /1],
7 NN\
M N M
/M\
M/ \M = [idn/1].

SN 7N
N M N

(11) ¥ functor F : K(A) — C with F(s) invertible Vs € S,

K(4) L; C
3 Ql G such that, Y[f/s], G([f/s]) = F(f)F(s)"" : F(M) — F(N).
D(A)

H.15. Remark: On S defined as in H.11 the following holds:
(a) id € S,
(b) Vs,t € S, st € S,

(c)Vf,g € K(A)(M®* N*), sof =sogfor some s € S iff there is t € S such that fot = got
|Gri, FR3, p. 53]/[#, MS3, p. 401].

More generally, we call a family S of morphisms in a category C left multiplicative iff (a)-(c)
and Lem. H.11 hold, in which case one can define likewise localization Cs such that Th. H.14
hold with K(A) — D(A) replaced by C — Cs [Gri, Th. 1.2, p. 8]/[# i, Prop. 2.4.32, p. 118].

NBEH Derived functors

We define functors between derived categories of modules, derived from ones between homo-
topy categories. Starting with .11 we will introduce a variant, dg-algebras and dg-modules.
This may be better suited to £ H-theory, which we introduce in ‘K.19. Fix a ring A.

X.1. We start with some remarks on D(A).



(i) Cohomology functor on K(A) carries over to D(A): Vi € Z,

K(A) —1 AMod.
,w

I —

D(4)

(ii) The fully faithful imbedding of AMod into K(A) from Rmk. H.10.(ii) remiains fully
faithful into D(A) with quasi-inverse H? : D(A4) — AMod.

(iii) The shift functor [n], n € Z, on K(A) carries over to D(A) [Hff, Th. 6.2.49, p. 374] by
setting
s[n]

G Xl 5 N[ ¢

qis

(M <& X L N)n] = (M

qis

[n]

X.2. We now introduce triangles in K(A) [#1/d, Prop. 7.1.14, p. 406/Eg. 6.1.10, p.342].

Definition: A distinguished triangle, d.t. for short, in K(A) is a sequence L* ENY VLRENGSCRUN

(%) (1 0)

L*[1] isomorphic in K(A) to a sequence L® ERGVLJRUN cone(f) —= L*[1].

D.t.’s are invariant under shifts [{f'#, Prop. 6.1.2, p. 336); M* % N* LN Li1)° —/,

Me[1]
remains a d.t. Also, Vn € Z, L[n]® AN Min]® DTk, Nin]* =D, L*n+ 1] is a d.t.
v, L4.18, p. 29]/[FFF, Prop. 6.2.14, p. 352. If X* &5 v* £ z* %5 X*[1] is another d.t.
with ¢ € K(A)(L*, X*), ¢ € K(A)(M*,Y*) such that ¢ o f = f' o ¢, one has a CD in K(A)
[, Prop. 6.1.3, p. 336]

L L e L N o]

¢l ¥ l¢[1]

X — Y —— 7 —— X°[1].
f g h

Also, the octahedron axiom [Hif], p. 341] holds.

E.g., Given an exact sequence 0 — L o M % N = 0in AMod imbed f and g into K(A) as in



Rmk. .10.(ii):

> 0 > L > 0 >
|

> 0 > M > 0 >
I

> 0 > M > 0 >

On the other hand, one has a CD

. — cone(f)™? —— cone(f)™' —— cone(f)® —— cone(f)! —— ...

I I
L&O0 0 M
K K
> 0 > L ! > M > 0 y
| Js
> 0 > 0 > N > 0 > )

which gives a qis cone(f) ~ N.

More generally [Gri, Prop. 4.10, p. 42|, V exact sequence 0 — L* = M* 4y N* = 0 in
C(4),

(1) (0 g) : cone(f) — N*is a qis.
For one has a CD

0 s Lo — e 9 s N°* s 0

*idM'T 0 Q)T

L* — M* W cone( f) o Le[1],

which induces a CD of LES’s

s H(L) Y iy MY Hi Ve HIP(LY) — HPY(M®) — ..

H _idHi(M')T H((0 g))T H T—idm(M-m)

. — HY(L*) T(f)) HY(M*®) T(l); H'(cone(f)) HY(L*[1]) — HY(M°[1)) — ...,

and hence (0 g) is a gis by the 5-lemma.

_—
H'((1 0))

Moreover [Gri, loc. cit.], if the sequence is semi-split, (0 g) € C(A)(cone(f), N*) is invertible in K (A):
(2) N*® ~ cone(f) in K(A).
For let s : N®* — M?* be a splitting of g: gos = idye. Define h € C(A)(N*®,cone(f)) via
Nk > n— (s(_nl,)) with [ € LF+1 such that f(I) = (dyros—sody)(n); g((dyos)(n)—(sody)(n)) =

10



(dx 0 g0 5)(n) — (g0 s0dy)(n) = dy(n) — dx(n) = 0,

(deone(y) © 1) (1) = <_JCfL d(L) <3<,j))dl< £(0) +((1cLli4 o s)(n))

(%wOmm+@wmw+wawﬁ_(@$$w>
= (hody)(n)

as f(—dpl) = —(fodp)(l) = —(dyo f)(1) = —=dy((dpros)(n) — (sody)(n)) = (dyosody)(n) =
(dyros—sody)(dyn). Then ((0 g)oh)(n) = (gos)(n) = n, and hence (0 g)oh 1dN We show

finally that /0 (0 g) = ideone(y) in K(A). V(%) € cone(f)¥, (ho (0 9))(%) = = (o)
with I’ € L*! such that f(I') = (dy; o s — sody)(g(y)). Define o : cone(f) — cone( )[—1] via
cone(f)F 3 (z) — (l(;/) with {” € L* such that f(I") =y — s(g(y)). Then

N (—dp 0\ [V dpl" —d,l"
dcone(f) OO’(y) - ( f dM> (0) (f(l” ) B ( ))
d AN —dr, 0 AN —drx l'+x + dpl”
7 © leone(f) (y) —o° ( f dM) (y) B U( )+ du(y ) ( )

fU+z+dl") = (dyos—sody)(g(y) + flz) + f(drl")
=du(s0g(y)) — (sodn)(g(y)) + f(x) + (dar o f)(1")
=du(sog(y)) — (sodn)(9(y) + f(z) + duly — s(g9(y)))
= f(x) +du(y) — (sodn)(g(y)) = f(x) +du(y) — s(g(f(x) + du(y)))-

{ideone(ry = o (0 9)}(5) N (:;) N (8(;(2;))) N (y —x;(rgl(/y))>
— {deone(f) © 0 + 7 0 deone(f) } G) ,

and hence h o (0 g) = ideone(s) in K(A), as desired.

as

Thus,

X.3. Definition: A d.t. of D(A) is a sequence isomorphic to the image of a d.t. in K(A)
under the localization [F i, Prop. 6.2.49, p. 374].

Thus, an exact sequence 0 — L LM% N = 0in AMod yields a d.t. in D(A)

L > M > N > L[1].
2| /(10)
cone( f)

Given a d.t. L* — M*®* — N*®* — L°*[1] in D(A) one obtains from H.11(1) an exact sequence
.. —— HY(L*) —— HY(M*) —— HY(N®*) —— H{(L°*[1]) —— ...

Il
Hi+1(Lo)

11



More generally, we say a functor F': D(A) — AMod is cohomological iff ' sends a d.t. to an
exact sequence. If L* — M*® — N°®* — L°[1] is a d.t. in D(A) and if F' is cohomological, as
M®* — N*®* — L* — M°*[1] remains a d.t., the sequence F(M®) — F(N°®) — F(L*[1]) is also
exact, and hence results an exact sequence

o= F(N*[-1]) - F(L*) - F(M*) — F(N®*) — F(L*[1]) — ....

Both D(A)(X*,?) and D(A)(?, X*®) are cohomological [Ff], Prop. 6.2.3, p. 347]. Together
with d.t.’s D(A) forms a triangulated category [H1d, Def. 6.1.7, p. 339].

K.4. Bounded derived categories

Definition: We let CT(A) = {M* € C(A)|M' = 0 Vi < 0} a full subcategory of C(A).
D*(A) = {M* € D(A)|H(M*) = 0 Vi < 0} forms a full subcategory of D(A), called the
subcategory bounded above. If KT(A) = {M* € K(A)|M* =0 Vi < 0}, DT(A) is equivalent to
the localization of Kt (A) with respect to St =K (A)NS [H, Prop. 7.1.20, p. 408].

Likewise, we let C~(A) = {M* € C(A)|M* =0 Vi > 0}, K (A) = {M* € K(A)|M'" =

0Vi> 0}. We call D-(A) = {M* € D(A)|H(M*®) = 0 Vi > 0} (resp. D*(A) = {M"* €
D(A)|H'(M*®) = 0 except for finitely many i}) the subcategory bounded above (resp. bounded,).

Ex. If H(M*®) = 0 Vi > n, there is a qis

L —— M"Y —— ker(dy,) > 0 > 0
L — M r M" —— M —— M ——
M

the top row of which is denote 7="(M*®).

If H(M*®) = 0 Vi < n, there is a qis

dn
. — M > M M Mt ———
> 0 > coker(dy; ') —— M ——

the bottom row of which is denote 72" (M?*).
Lemma: VM® € D™ (A), 3P* € D~ (A) with all P* projective: P* 95 M in C(A).

Proof: In case M* is the image of M € AMod, i.e., M*=---—=0—> M —0— ... with M

12



in degree 0, take a projective resolution --- — P, — Py — M — 0. Then

. —— p! » PO > 0
Il Il
Py Py
> 0 s M > 0 >

is a qis in C(A).
In general, we construct a qis f*® : P®* — M* by descending induction as follows. To start

the induction, we may by Ex. above assume that M = 0 Vi > 0. Assume that we have
constructed a CD

P —— prtl ———

fnl lfnJrl

M —— M

such that H'(f*) is invertible Vi > n + 1 with a CD

ker(dp,) —— P"

& v

We will construct a CD

to make H"(f*) invertible and to induce a CD

ker(dps )

-1

H*Y(M®) +— ker(d}; ).

13



The induction hypothesis allows one to construct a CD

where Y"1 = {(m, x) € (M /im(d};?))@ker(dp)|dy;  (m) = f(z)} with m = m-+im(d}; ?),
me M1

Let now x € ker(d}) with f*(z) = 0 in H*(M*®). Thus, f*(z) € im(d}; '), say f"(z) =
di;t(m),m € M™'. Then (m,x) € Y™ !, and hence z € im(d% '). Then x = 0 in H*(P*),
and hence H"(f*) : H"(P*) — H"(M?®) is invertible.

Let next z € ker(ds'). Then the image of z in ker(d?) vanishes, and hence the image of z
in Y™ is of the form (m,0) with m = 0 in ker(d%,). Thus, f"~'(z) € ker(d};'). Finally, let
m € H""Y(M*) with m € ker(d};'). Then m = 0 in ker(d?,), and hence (m,0) € Y™ L. Take
y € P" ! such that y — (m,0). Then f"'(y) = m in M"!/im(d};?), and hence one has
obtained a CD

ker(d% 1)

—

HY(M?*) +—— ker(d};1).

X.5. We define a bifunctor AMod®(?,7) : C(A) x C(A) — C(Z), precisely, C(A)°P x C(A4) —
C(Z), as follows [Gri, 10.1, p. 91]: Vi € Z, set AMod'(M*,N*) = [],o, AMod(M7, N*[i}’
and d' : AMod'(M*, N*) — AMod""'(M*, N*) such that for each ¢ € AMod'(M*, N*) by
d'¢=dyod— (—1)pody € AModt'(M*, N*)

Ni-i-j J
o N

M / > Nit+i+1
m JVERR bj

Note that the complex is a complex of abelian groups, not of A-modules. If f € C(A)(X*, M*)
and g € C(A)(N*,Y*), we define AMod®(f*,g*) : AMod®*(M*, N*) — AMod®*(X*,Y*) by
setting ¢ — glil o p o f Vo € AMod'(M*®, N*®).
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One has
C(A) x C(A) 2D o(z)

Lemma [Gri, 10.2, p. 92]: Vi € Z, VM*, N* € K(A),
H'(AMod®*(M?*, N*)) ~ K(A)(M*, N*[i]).

Proof: One has

kef(diAMod'(MnN-)) ={¢¢ AModi(M', N*)|dyo¢ = (_1)i¢ ody}
— {6 € AMod!(M*, N*)|dngy 0 6 = ¢ 0 dar} = C(A)(M*, N*[i]).

XK.6. VN* € K(A), the functor AMod®(?, N*) : K~ (A) — K(Z) is triangulated, i.e., sends a
d.t. to a d.t. [Gri, 10.4, p. 93]. For it to induce a functor R; AMod®*(?, N*) : D~ (A) — D(Z)
compatible with the localization functors K~ (A4) — D~ (A) and K(Z) — D(Z), one must take
care that it be well-defined on morphisms. Thus, let P~(A) = {P* € C~(A)| P’ projective Vi}.

Lemma [Iv, 1.6.2, p. 41]: Let P* € P~ (A). Vf € C(A)(M*,N*) qis,
K(A)(P*, M*) ~ K(A)(P*,N*) wia ¢+ foo.

Proof: Consider a d.t. M* L N* — cone(f) — M*®[1]. As K(A)(P*,?) is cohomological
(i, Prop. 6.2.3, p. 347], one has a LES

(A)(P*.f)

-+ — K(A)(P*, cone(f)[—1]) — K(A)(P*, M*) = K(A)(P*,N°*) —

K(A)(P*, cone(f)) — ...
As H"(cone(f)) =0 Vn € Z from H.11(2), we have only to show that
(1) K(A)(P*,X*) =0 VX*®e C (A) with all H*(X*) =0,n € Z.

Given g € C(A)(P*, X*), we construct a homotopy o : P* — X* such that g" = dvtoo™ +
o™ o d% by decsending induction on n. Assume done up to n + 1: ¢' = d5' oo’ + o't o diy
Vi > n + 1. We now construct o” : P* — X1

dn dntt
pr—L£ pntl 2, pnt2

ULS lan lfn+% lfn+2

X ker(d%) —— X" —— X" —— X2

n +1

n—1
dX
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One has
d% o (f* —o™lodp) = f"odp —dy oo™ o dp
= (dy oo™ + 0" odb ) odp —dy oo™ odp =0,

and hence there is s : P" — ker(d’%) such that f* — o™ od% =s. As H"(X) = 0, ker(d%) =
im(d% ). As P is projective, s factors through X"~! — ker(d%) to yield o™ with f* =
o"ody +dv oo

&.7. Corollary: (i) YP* L5 M* <& Q* in K~ (A),
qis

qis

(ii) P~(A) ~ D~ (A).

Proof: (i) Let ¢ € K(A)(P*,Q*) with go ¢ = f and ¢ € K(A)(Q*, P*) with f o1 = g after
K.6. Then fopop=gogp=f= foidps. As K(A)(P*, f) : K(A)(P*, P*) = K(A)(P*, M*),
we must have 1 o ¢ = idp.. Likewise, ¢ o ¢ = idge.

(ii) See [Gri, Th. 8.10, p. 73].

K8, VY* € K(A) with all Hi(Y®) = 0, i € Z, all H(AMod®*(P*,Y*)) = 0 [Gri, 10.5, p. 93].
One then obtains from [Gri, 10.7, p. 95/9.8, p. 82], VN* € K(A),

AMod®(?,N*)

P~ (A) » K(Z)
| le
D—(A) ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, > D(Z)

Thus, VM* € D=(A), with P* € P~(A) such that P* £ M* in K= (A), YN* € K(A),
(1) R; AMod®*(M*, N*®) ~ AMod*(P*, N*).

In particular, VM, N € AMod, regarding M as --- - 0 —> M — 0 — --- € K (A) with M
located in degree 0 and N in K(A) likewise, one has

H'(R; AMod®(M, N)) ~ H'(AMod*(P*, N)) for some P* € P~ (A) with P* Sy Vs
~ H'(--- = AMod(P™™,N) — AMod(P™™"" ', N) — ...)
as AMod"(P*, N) = | [ AMod(P?, N[n}J’) = AMod(P~", N)

J
~ Ext’ (M, N)

16



AMod —— D~ (A)
) lR;AMod(?,N)
Ext;(?,N)‘,.”._ D(Z)
ZMod.
From (1) one obtains a bifunctor R; AMod®(7,7) : D7(A) x K*(A) — D(Z). If M* €
D~ (A), the functor Ry AMod®*(M*,?) : K*(A) — D(Z) induces a functor R};R; AMod*(M*,?) :

Dt(A) — D(Z) [Gri, 10.7, p. 95]: let IT(A) = {I* € KT(A)lall I", n € Z, are injective}.
VN*® € Dt (A),

R},R; AMod®(M*,N*) = R; AMod®(M*,I°) with I* € I*(A) such that N* % J*.
One has likewise, YM* € K~ (A), a functor AMod®(M?*,?) : K" (A) — K(Z), which induces
R}, AMod*(M*,?) : DY(A) — D(Z), and a bifunctor Rj;AMod®(?,?) : K= (A)xDT(A) — D(A).

VN* € DT(A), Rj;AMod*(?, N*) : K (A) — D(A) induces R;R};AMod®*(?,?) : D=(A) x
D*(A) — D(Z) [Gri, 10.6, p. 94]: VM* € D~ (4),

R; Rj;AMod®(M*, N*) = Rj;AMod*(P*,N*) with P* € P~(A) such that P* % M®.

Theorem [Gri, 10.8, p. 95]: On D~ (A) x D™ (A)
R Ry AMod*(?,?) ~ Ry R, AMod*(?, ?).

X.9. Proposition [Gri, 10.9, p. 96]: VM* € D~ (A), VN* € DT(A), Vi € Z,
H'(R5,R; AMod®(M*®, N*)) ~ D(A)(M*, N*[i]).

Proof: Let P* € P~(A) with qis P* — M*® and J* € IT(A) with qis N* — J*. Then

(1) LHS = H'(R};AMod*(P*, N*)) = H'(AMod*(P*, J*)) by construction
= K(A)(P*,J°[i]) by K.5
= K(A)(P*,N*[i]) by X.6.
We now claim
(2) D(A)(P*, N*) ~ K(A)(P*, N*®).
Let [P* <> X* L5 N*] € LHS. As P* € P~(A), there is Y* € K~ (A) with qis Y'* — X*. Take
qis
a qis Q* — Y* with Q* € P7(A), so

Q. Y.

qis l

By xe
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Then [P* < X° ER N°*] = [P* & @0 LN N°*] with s ot invertible in K(A) by /X.7. Thus,
one obtains a map D(A)(P*, N°*) — K(A)(P*,N*) via [f/s]| — (fot)o (sot)~! with inverse
[h/1] <= h.

X.10. YM*®,N* € D(A), Vi € Z, set
Ext’ (M*®, N*) = D(A)(M*, N*[i]).
In case M* € D~ (A) and N* € D" (A) one has from X.9
Ext’,(M*, N*) = H'(Rj;R; AMod*(M*, N*)).

VM, N € AMod,
H'(Rj;R; AMod*(M, N)) ~ K(A)(P*,N[i]) by k.9.1
~ H'(AMod*(P*,N)) by X.5
~ H'(AMod(P*, N)) = Ext’, (M, N),
consistant with the notation in H.6.

K.11. A wvariant: dg-algebras and dg-modules

Let k be a field, and let Alg, denote the category of k-algebras

Definition: A Z-graded k-algebra is a k-algebra A such that A = [],., A" as k-linear spaces
with A'AT C A Vi, j and 1 € A°; A' should not be confused with A...A. We will often

i—times
suppress Z. and refer to a graded k-algebra or even to a graded algebra.

E.g. The polynomial k-algebra k(z] in x is a graded algebra k(x| = [ [,y kz’ with

) kzt i
k[ac]lz{ 1 eN,

0 else.

X.12. Let A be a graded k-algebra.

Definition: A graded A-module is an A-module M such that M = HiEZ M? as k-linear spaces
with A*M? C M"™ Yi,5. We say m € M is of degree i iff m € M, in which case we write
deg(m) =i. We say m € M is homogeneous iff m € M" for some i € Z.

If M, N are graded A-modules, we say f € AMod(M, N) is of degree k iff f(M') C N*+*
Vi. We let AModgr denote the category of graded A-modules with morphisms of degree 0.
X.13. Definition: A dg-algebra is a pair (A,d) of a graded k-algebra A = [].., A’ and a
k-linear map d4 : A — A of degree 1 such that

1EL
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(i) &% 0,
(ii) Va € A homogeneous, Vb € A, da(ab) = (daa)b + (—1)98%a(d4b).
In particular, d41 = 0.

A dg A-module is a pair (M,dny) of a graded A-module M and a k-linear map dpy : M —
M of degreee 1 such that

(i) & =0,
(ii) Ya € A homogeneous, Vm € M, dp(am) = (daa)m + (—1)%8%(dpm),
in which case we set H (M) = ker(da|agi ) /im(da| 1) Vi € Z.

A morphism of dg A-modules is a homomorphism f : M — N of A-modules of degree
0 such that dy- o f = fodpy, in which case one obtains H'(f) : H(M) — HY(N) Vi € Z.
We say f is a qis iff H(f) is invertible Yi. We denote the category of dg A-modules by
Cag(A). For M € Cyy(A) and i € Z let M[i] € Cqq(A) such that M[i]) = M Vj € Z and
dmp) = (=1)"dpm

E.g. (i) The dg-algebra A itself is a dg A-module with the same differential.

. A A ifi=
(ii) Let A be a k-algebra. Set A = [, , A with A* = e =0, Then A forms a

0 else.
dg-algebra with dq = 0. A dg A-module (M,dy) is M = [],., M’ such that each M’
i € Z, is an A-module with dyy € AMod(M?, M*™) such that d3, = 0 and dy(am) = adpm
Va € A= A" Thus, dy is A-linear and (M, d ) is just a complex of A-modules.

’K.14. For a dg-algebra A one defines Kqg(A), Dag(A), D, (A), ete. from Cgg(AA) in the standard
way; we say f,g € Cag(A)(M,N) are homotopic iff there is s € AModgr(M, N[—1]), which
need not belong to Cgg(A), such that f — g = sdy + dars. We define the homotopy category
Kag(A) as the ideal quotient of Cgy(A) by the null homotopic morphisms: Kag(A)(M,N) =
Cag(A)Y (M, N)/Htag(M,N) with Htqe(M,N) = {f € Kag(A)(M,N)|f is homotopic to 0}
[BL, 10.3.1], [, Def. 3.2.43, p. 147]. For f € Cqu(A)(M,N) the cone of f is cone(f) =
M(1] & N with differential (_?CM d[j\/) We call the sequence M %5 A oD, cone(f) o,
M[1] a standard triangle. A distinguished triangle in K44(A) is a sequence isomorphic to a
standard one in Kqg(A). We say an exact sequence 0 — £ — M — N — 0 in Cgy(A) is
semi-split iff it splits as graded A-modules. As in K.2.(2) any semi-split f € Kgg(A)(L, M)
can be completed to form a d.t. L - M — N — L[1] in Kgg(A). Together with the d.t.’s
Kag(A) form a triangulated category. The localization of Kqg(.A) by the qis’s form Dgg(A) with
triangulation induced from one on Kgg(A).

Definition: VM, N dg A-modules, let AMod®*(M,N) denote a complex of k-linear spaces
such that

(i) Vi € Z, AMod' (M, N) = AModgr(M, Ni]) = {f € AMod(M,NTi])|f(M?) C NTi)?
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Vj € Z} = AModgr(M|[—i], N),

(i) Vf € AMod" (M, N), df =dy o f — (=1)'f ody.

In particular, as d 41 = 0, one has a bijection AMod®(A, M) — M via f +— f(1) such that
(df)(1) = dm(f(1)). If welet af = f(?a) Va € A f € AMod*(A, M), AMod*(A, M) comes

equipped with a structure of dg A-module by d to make the bijection into an isomorphism of
dg A-modules

(1) AMod* (A, M) ~ M.

One has only to check that, Vf € AMod'(A, M), Va € A7, d(af) = (dga)f + (=1)’a(df). In
MI | however, one has

{d(af)}(1) = {d(f(?a))}(1) = {dac o f(?a) — (1) f(?a) 0 da}(1) = dm(f(a)) = dm(af(1))
= (daa)f(1) + (=1 adm(f(1)) = (daa) f(1) + (=1)a(df)(1)
= {(daa)f + (=1)a(df)}(1),
as desired.
Ex. (i) ker(d : AMod’(M, N) — AMod" (M, N)) = Cag(A) (M, N).
(i) HO(AMod®* (M, N)) = Kqu(A) (M, N).

X.15. For a dg-algebra A a right dg A-module (M, dy,) is a right graded A-module M =
[1;cz M" with a k-linear map dag : M — M of degree 1 such that d3, = 0 and that

(1) da(ma) = (dym)a + (=1)%*8™m(dqa) Va € A,¥m € M homogeneous,

We denote the category of right dg A-module by Cge(A)", and define Kgg(A)", Dag(A)" as for
the dg A-modules [BL, 10.6.1].

We define the opposite AP to be a dg-algebra whose ambient k-linear space and the differ-
ential are the same as those of A, but with new multiplication [BL, 10.6.2]

(2) agonb = (—1)48@ ey g b homogeneous.

Then Cyg(A)" ~ Cqq(A°P) [BL, 10.6.3] by assignning M € Cgg(A)" a structure of left dg
A°P-module such that

(3) am = (—1)de@deetmyn g m homogeneous.
VM € Cge(A)", YN € Cgg(A), define a complex M ®4 N of k-linear spaces with the
differential such that
(4)  dmen) = (dym)@n+ (=1)*m e dyn  ¥m e M,¥n € N homogeneous.
In particular,

(5) AQuN ~N via a®n— an,
(6) MRy A= M via m®a+— ma.
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K.16. Bar construction

Let A be a dg-algebra. One has that bifunctors AMod®*(?,7?) : Kgg(A)® x Kgg(A) —
Kig(k) = C(k) and 7®47 : Kgg(A)" x Kgg(A) = Kgg(k) are both triangulated, i.e., sends a
d.t. to a d.t. [BL, 10.8.1, 10.9.1], [#}i, 6.2.2, p. 364]. In order to define derived functors of
AMod*(7,7?) and ?® 47 we introduce bar construction [BL, 10.12.2.4].

Let M be a dg A-module. Let Py = Ay M =[], P§ with P§ = (Po)" = [1,,,—; A* @k M".
Va € A homogeneous, Vm € M, define dp,(a ® m) = (d4a) ® m + (—=1)%8% @ dpygm. Then
(Poy,dp,) forms a dg A-module. If 6y : Py = M via a @ m — am, 6y € Cyg(A)(Po, M), and
hence (ker(do), dp, |ker(ss)) € Cag(A). Let next P_y = A ®y ker(dg) with dp_, defined just like
dp, replacing dag by dp, |ker(so)- Then (P_y,dp_,) € Cye(A). If 61 : P_y = Py via a @ p +— ap,
01 € Cag(A)(P-1,Po), and hence (ker(d_1),dp_,|ker(s_,)) € Cag(A). Repeat to get an exact
sequence in Cgq(A)

s Py B P S Py 2 M 0.

Definition: Set B(M) = [[;c; P-ili] = [1;c; BIM)? with BIM) = [1,,(Pili]) = [L;ez P
As AF(P_[i])} = AFP™ C PR — p_ itk B(M) is a graded A-module. For p €
P_;[i] homogeneous let dpa(p) = dp_,(p) + (—1)%8P6_;(p). If p € (P=li])! € B(M),
dp () € P = (PP C BOMY™ and -4(p) € P, = (P yli — 1)), and
hence dg vy (p) € B(M)IT. If a € AF,

dpom (ap) = dp_, (ap) + (=1)*6_i(ap) = da(a)p + (—1)*adp_, (p) + (—1)*7ad_;(p)
= da(a)p+ (—1)*a{dp_ (p) + (=1)0_:(p)} = dala)p + (—1)*adpy (p).

Thus, (B(M),dpmy) forms a dg A-module.

E.g. Assume the set up of E.g. X.13.(ii), and let M be an A-module, regarded as a dg A-
M iti=0,

A Then B(M) = [1,cn P-ili]

module M = [],., M" with dyy = 0 and M" = {
reads

A M ifi=0,
0 else,

Po=[[Pi with Pj=(Py) = {
€L

:P(())v d77() :07

73() """"""""" > M
I I

P MO
I o
A@k M — M

a®@m ——— am,
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P_1 = AR ker(dg)

€L

- 7)91, d7371 == 07

I
——
(e}

Il Il

0 0
Py Py

Il 5 l

A@]k ker(ég) ;1> A®kM

a®r —— ax,

P_o=A®yker(d_1)
— HPi? with P, = (P_y)' = {O

1€Z

— 73927 d'P72 = O7

I o I

Ay ker(80,) —= A @y ker(8))

a®y > ay,
R 'P,Q' = PO = (’Pfi)o =A Rk ker(59i+1), dpﬂ. = 0,

—1

o

P > Poita

P, 50/ Pl

I az.

A ®]k ker(éOM

a®z

Thus, P_;[i] = P%,[i] = (P_;[i])~*. Then, Vj € Z,

By = ([[P-dily = [P = {Z)’Oi
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A @y ker(dy) = A @ ker(8))

A @y ker(0_1) = A ®y ker(dY)

if1 =0,
else,

if 1 =0,
else,



If p e (P_li]) ™ = P%, dpan(p) = dp_,(p) + (=1)%0_i(p) = (—1)'0_s(p). Vj €N,

A ®]k ker(égV
a®@x

Thus, B(M) = [[;c;, BIM)" = [[,cx B(M)™" with B(M)~" = A ®y ker(6°,,,), and d

B(M) -

0
B(M)™" — B(M)~"! A-linear. As B(M)° =P = A@y M 2 M s surjective, we may regard
(B(M),dp()) as a free A-linear resolution of M.

Lemma: One has [BL, 10.12.2.5]

/X.17. Analogously to ‘K. 6.1, one has

Lemma: Let M, N € Cgy(A).

(i) If H'(N) = 0 Vi € Z, H(AMod*(B(M),N)) = 0 Vi € Z, which suggests the “projectiv-
ity” of B(M) [BL, 10.12.2.6].

(ii) Kag(A)(B(M),N) ~ Dgy(A)(B(M),N) [BL, 10.12.2.2].
K.18. Asin K.8

Definition: We define RAMod®(?,?) : Dag(A) x Dgg(A) — D(Z) by setting
RAMod* (M, N) = AMod*(B(M),N) VM, N € Cqe(A) [BL, 10.12.3.1],
and ™ ® 47 : Dag(A)" x Dag(A) — D(Z) by setting
LE UM = LE@ 4B(M) VM € Dygg(A),VL € Dyg(A)  [BL, 10.12.4.5].

Theorem: Let f: A — B be a morphism of dg-algebras. If f is a qis,
Dyg(A) >~ Dgg(B) via M — B &4 B(M)
with quasi-inverse N'— f*N which is N regarded as a dg A-module through f.
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Proof: As f is a gis and as B(M) is flat over A, one has by ‘K.16

f®A?(M)

qis

B &4 B(M) A@4 BM) ~ BM) 25 M,

and hence f*(B®4 B(M)) >~ M in Dgg(A).
Likewise, one has a CD
by — by
B@yB(f*N) —— N
f®AB(f*N)TqiS Tqis
A@aB(f*N) —— BWN),
and hence B®4 B(f*N') ~ N in Dqy(B).
K.19. #RH-theory

Let k be a field and A a k-algebra.

Definition: A projective A-module P is called a progenerator iff VM € AMod, P®» — M for
some A.

E.g. (i) A is a progenerator.

(ii) If A = k[G] for a finite group G with chk = 0, P = [[V with V running over a complete
set Irr of representatives of the non-isomorphic irreducible k[G]-modules is a progenerator, as

k[G] ~ H V®riemod ey by Maschke

Velrr

_ H V/ @dimv

Velrr

Theorem: Let P € AMod be a progenerator of finite type, B = AMod(P, P), and ModB the
category of right B-modules. There is an equivalence

AMod ~ ModB  wvia M — AMod(P, M) with quasi-inverse N ®&p P <+ N,

where AMod(P, M) is a right B-module via (fb)(p) = f(b(p)) while N @p P is a left A-module
via a(n®p) = n@ap; if ¢ € B, a(np@p) = np® ap = n® b e (ap) =n @ ¢(ap) = n® ap(p) =
a(n ® ¢(p)) = a(n @ ¢ e p).

Proof: We check first that
(1) AMod(P,M)®p P~ M via ¢ Qpr ¢(p).

24



Assume first that M = P® for some A. Then
AMod(P, M) = AMod(P, P®)
~ AMod(P, P)®* as P is of finite type over A
— BEBA7
and hence
(2) AMod(P, M) @p P ~ B @p P ~ P = M.

In general, take a resolution of M, an exact sequence of A-modules PP41 — P%%0 — M — 0,
to obtain a CD

AMod(P, P®M) @5 P —— AMod(P, P®%0) @ P —— AMod(P, M) @3 P — 0

~l<2> ~l<2> l

PO y PP s M s 0.

As P is projective, the top row is exact, and hence AMod (P, M) ® g P ~ M by the 5-lemma.

We show next that
(3) N ~ AMod(P,N ®p P) via n—n®idp(?).

Take a resolution B4 — B%®% — N — 0of N. Then B®1 @z P — BP0 ®@zP - NP — 0
remains exact. As P is projective, one has a CD of exact sequences

AMod(P, B¥ @5 P) —— AMod(P, B®% ®5 P) —— AMod(P,N ®p P) — 0

| | |

BoM y B%1o y N s 0.

As B ~ AMod(P, B ®p P) via b — b ® idp(?), the left 2 vertical arrows are invertible, so
therefore is the 3rd.

X.20. Remarks: (i) Any categorical equivalence F' : ModB ~ AMod is realized as above with
P = F(B):
AMod(P, P) = AMod(F(B), F(B)) ~ BMod(B, B) ~ B.

(i) One can set up the theorem in terms of right modules entirely as follows [Hififl, Cor.
4.4.10, p. 281]: let P be a progenerator of finite type in ModA and let B = ModA(P, P). Then
ModA ~ ModB via M +— ModA(P, M) with quasi-inverse N ®p P <+ N,

where the right B-module structure on ModA(P, M) is given by (fb)(p) = f(b(p)).

X.21. E.g. Let G be a finite group, k an algebraically closed field of characteristic 0. Put
A =Kk[G], P = [V with V running over a complete set Irr of representatives of the non-
siomorphic irreducible k[G]-modules, and B = AMod(P, P). By Schur’s lemma B ~ [[, ., k.
In particular, B is commutative, and hence one obtains an equivalence

k[G]Mod ~ ( J] k)Mod.

Velrr
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/KBEH #H-theory for dg-algebras
In 7K.1-5 we describe #ZH-theory of dg-algebras. We then define Koszul rings in 7K.6.

K.1. Let ¢ : A — B be a morphsm of dg-algebras. Put ¢* = B*®47 : Dgg(A) — Dag(B),
and let ¢, : Dgg(B) — Dgg(A) denote the restriction of scalars. As B(M), M € Dgy.(A),
is Kgg(A)-flat [BL, 10.12.4.4], ¢*(M) ~ B ®@4 B(M) [BL, 10.12.4.5]. We say ¢ is a qis iff
Hi(¢) : H(A) = HY(B) Vi € Z.

Theorem [BL, 10.12.5.1]: If ¢ is a g¢is, ¢* : Dag(A) — Dag(B) is an equivalence with
quasi-inverse Q..

Proof: Let M € Dgy,(A) with bar resolution 6 : B(M) — 9% M. Then (¢y 0 p*) (M) =
Bto M = B®4 B(M). Define a natural transformation « : idpy,(4) = @0 via

M—>B x
lf J
B@AB(M) 1®w.

As ¢ is a gis and as B(M) is K4g(A)-flat [BL, 10.12.4.3], ¢ ® 4 B(M) remains a qis; consider a

dt. AL B cone(¢) — A[1] with cone(¢) acyclic as ¢ is a gis. Then A ®@4 B(M) PEABUD,
B®4 B(M) — cone(¢p) ® 4 B(IM) = A®4 B(M)[1] remains a d.t. with ¢ ® 4 B(M) qis as
cone(¢) @4 B(M) remains acyclic. Thus, f is a gis, so therefore is a.

Consider next a natural transformation 3 : ¢*¢. — idp,, () such that

¢*¢*N """""""""""""""""" N b5/(y)

BoaBWN) by

with ¢’ : B(N) — N denoting the bar resolution of N regarded as dg A-module ¢, N. In
particular, B(NV) = B(¢.N) is Kgg(A)-flat. One has a CD

B(N)
U

A®4 B(N)
¢®AB(N’)\L

As ¢ ®4 B(N) and 0" are both qis’s, so is 5. Thus, ¢* and ¢, are quasi-inverse to each other.

7K.2. Let A be a dg-algebra.

Definition: A dg A-module M s called a generator iff Dag(A) coincides with the smallest
thick full triangulated subcategory containing M and closed under infinite direct sums, i.e., if
(M) denotes the smallest full subcategory of Dag(A) such that
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(i) M € (M),

(11) (M) is closed taking infinite direct sums, direct summands, and shifts,

(i) ¥V d.t. My — My — Mz — M;[1] in Dag(A), if My, My € (M), M3 € (M),
then Dgg(A) = (M)).

Note that ((M)) is closed under isomorphism in Dg,(A) as it is closed taking direct sum-
mands.

Lemma: A is a generator of Dag(A).

Proof: Let M € Dgy(A). As M ~ B(M) in Dg,(A), we have only to show B(M) € ((A).
As B(M) =[], P-i[i], it suffices to show that each P_; belongs to (A).

One has an exact sequence 0 — A®gker dyy — AR M — ARk (M /kerdp) — 0in Cyg(A),
which induces a d.t. A®gkerdy — Ak M — AR (M/kerdy) — (AQxM)[1] in Kgg(A) in
Dag(A); as the short exact sequence is semi-split, the d.t. actually is realized in Kqq(A) already
K.2(2). Asd =0 on kerdpg, ARy kerdy = AFerdr and hence A®@y kerdy € ((A)). Likewise
A @k (M/kerdpy) € (A)). Then Py = Ak M € ((A)). Likewise, P_; = A®y ker(dy) € (A)),
and all P_; € ((A)).

K.3. Let X € Dgg(A). We equip the complex C = AMod®*(B(X), B(X)) with a structure of
dg algebra with C' = AMod"(B(X), B(X)) and differential d¢ given by the differential d on
AMod*(B(X), B(X)); we have to check that de¢(fg) = (def)g + (—1)"fdeg Vf € C' Vg € (4.
Indeed,

RHS = (def) o g+ (=1)'fodeg=(do f = (=1)'fod)og+ (=1)fo(dog—(=1)god)
:do(fog)—(—1)i+jfogod:LHS.

Let now B = AMod*(B(&X), B(X))° be the dg-algebra opposite to C. The functor AMod*(X,?) :
Kgg(A) = Kgg(B) induces RAMod®* (X, ?) : Dgg(A) — Dag(B), which reads AMod®*(B(X),?)
as B(X) is Kqg(A)-projective [BL, 10.12.3.1].

Definition: We say X € Dgg(A) is small iff Dag(A)(X,?) commutes with arbitrary direct
sums, i.e., X is of “finite type”.

Theorem: If X is a small generator of Dag(A),B(X)*®5? : Dag(B) — Dag(A) is an equiva-
lence with quasi-inverse RAMod® (X, 7).

Proof: As B is Kgg(B)-flat [BL, 10.12.4.1], B(X)“®pB ~ B(X)®pB ~ B(X) ~ X in Dgy(A).
Then, as Dqg(A) = (X)) by the hypothesis, B(X)“®z? is essentially surjective/dense [F1ft,
Def. 2.2.19, p. 71], i.e., VM € Dyg(A) N € Dyy(B) : M ~ B(X)*@sN. Thus, we are left to
show that B(X)“®p is fully faithfully.
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5 Put 9 = {N € Dg(B)|Dag(B)(B,Ni]) ~ Dge(A)(B(X)-@5B, B(X)‘@pNi]) Vi € Z}.
ne has
Dag(B)(B, BJi]) ~ Kag(B)(B, B[i]) as B is Kag(B)-projective [BL, 10.12.2.2] by K.14.1
~ H'(BMod*(B,B)) by Ex. K.14.(ii)
~ H'(B) by K.14.1 again
= H'(AMod*(B(X), B(X))°")
~ Ky (A)(B(X), B(X)[i]) by Ex. X.14.(ii) again
~ Dyg(A)(B(X), B(X)[i]) by K.17.(ii)
~ D (A)(B(X) @58, B(X) ®5B[i]) as B is Kqg(B)-flat,
and hence B € ). One has also Dgg(A)(B(X)*®pB,7) =~ Dag(A)(B(X),?) ~ Dgg(A)(X,?).

As X is small, 9 is a thick triangulated subcategory of Dgg(B) closed under taking arbitrary
direct sums. Then ) D (B)) = Dgg(B) by 7K.2. Thus, VA € Dyy(B),

Dag (B)(B, N'1i]) == Dag(A)(B(X)*®5B, B(X) *@pNi)).
Then, as (B)) = Dqag(B) again, VM € Dg,y(B),
Dyg (B) (M, Ni]) = Dyg(A)(B(X) @M, B(X)*@5Ni]),
as desired.

/K.4. Remarks: (i) If X is just small, the functor B(X)t®5? is already fully faithful.

A ifi=0,

(ii) Let A be a k-algebra and let A =[]
0 else

iz A’ be a dg-algebra such that A" = {
with d4 = 0. Recall from Eg. ‘K.13 that
(1) Cag(A) ~ C(A).

Let now X* € D(A) be a small generator with D(A)(X*®, X*[{]) = 0 Vi # 0. Put B =
D(A)(X*, X*)°P and define a dg-algebra B from B as for A from A. Let B’ be the dg-algebra

AMod*(B(X*), B(X*))? using (1). Then Dgy(B’) ~ Dgg(A) by 7K.3 via B(X*)L®p?, and
hence

(2) D(A) = Dyg(A) = Dgg(B').
On the other hand, Vi € Z,

H(B') ~ K(A)(B(X*),B(X*)[i]) by k.5
D(A)(X*, B(X*)[i]) by X.9(2) as B(X*) — X* is a projective resolution

~ D(A)(X*, X°[i]) = {D(A)(X‘,X‘) if ¢ = 0,

12

l

0 else.

As AMod’(B(X*), B(X*)) = Cg(A)(B(X*),B(X*)) =~ C(A)(B(X*),B(X*)) and as
D(A)(B(X*),B(X*)) ~ D(A)(X*,X*), the quotient (B')°* — B induces a qis B — B of
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dg-algebras. Then

Ddg(B,) ~ Ddg(B) by 7K.3
~D(B) by (1),

and hence together with (2) one obtains Rickard’s theorem

D(A) ~ D(D(A)(X*, X*)°P).

K.5. More generally, let X € Dgg(A) and put B = AMod®*(B(X), B(X))°®. Let (X) de-
note the smallest triangulated subcategory of Dg,(.A) containing X closed under taking direct
summands; it may not be closed under infinite diret sums.

Theorem: One has a CD
B(X)l®g?

Dag(B) Dag(A)
] J
(B o » (X)

with quasi-inverse RAMod®(X,?) : (X) = (B).

7K.6. Koszul rings

Let A = [T,y
dim A; < oo Vi.

A; be a positively graded k-algebra with Ay semisimple as a k-algebra and

Ex. (i) [[,0 A < A.

(ii) If M = [, M; is a graded A-module, pure of weight n: M; = 0 Vi # n, M is semisimple.

Let M = [],.;, M; be a graded A-module, and n € Z. We let M (n) denote another graded A-
module such that M(n); = M;_,, Vi € Z; we alter the notation from ‘K.12. Earlier, for a graded
A-module N = [],_, N" we let N[n] denote another graded A-module such thatN[n]" = N**"

Vi € Z.

Definition: We say A is Koszul iff Ao, regarded as A/ []
projective A-modules

>0 Ai, admits a resolution by graded

R e W A S & P |
such that each P~%, i € N, is generated by its i-th degree piece: P~ = A(P™);.

E.g. Let A = k[z,y] be a polynomial k-algebra in indeterminates = and y, graded in such a
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way that A; =] ., ka*yt. Then Ay = k admits a resolution by graded projective A-modules

A A/ Hi>0 A;
| 3
0 —— k[%,y]<2> — k[m,y]@2(1> - k[l’,y] > k > 0

h —— (—yh, zh)
(f,9) —— af +yy.
Thus, k[z, y] is Koszul.
7K.7. Any polynomial k-algebra turns out Koszul, which we presently demonstrate.

For a finite dimensional k-linear space V' let A = S(V') denote the symmetric algebra of V'
over k, graded such that degV = 1. We will write its degree i-piece as A; = S(V), 1 € N. If
x1,..., 2, is a k-linear basis of V', S(V') ~ k[z1, ..., x,] the polynomial algebra in z1, ..., z,.

Let also T(V) = [ ;e TH(V) with T*(V) = V®i Vi denote the tensor algebra of V' over k:
the multiplication on T(V) is given by

T(V)x TH(V) - T (V) via (1®  @u,w1 @ Quwj) =11 Q@ QU QW @+ @ w,.
Thus, S(V) ~ T(V)/(v1 ® vg — v3 @ v1]v1,v9 € V).

Set A(V) =T(V)/(v®@wv|v € V), the exterior algebra of V' over k. We will denote its degree
i-piece by AY(V). We will write the image of v ® w € T?*(V) in S*(V) (resp. A%(V)) as vw

(resp. v Aw). Thus, A(V) =37 k(v A--- Av;). In terms of basis x1, ..., zp,
AZ(V) = H k(xﬁ /\"'/\xji)'
1< <gi

Definition: Vi > 0, define d : S(V) @, AY(V) — S(V) @x AHV) via © @ (vy A -+ Avg) =

D (F1 ;@ (v A Avjir Avjpa A Awg). We call a sequence, with n = dimV,

0 — S(V) @ A"V L S(V) @ A1V —4—

—L 5 S(V) @ AV L S(V) @ AV RN > 0
~| ~|

S(V) @ V S(V) S(V)/ i S'(V)

Koszul complex of V.

Ex. d is well-defined and d* = 0.

E.g. Assume that V is 2-dimensional with a basis z and y. Thus, S(V) ~ k[z,y], A?V =
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k(x Ay), A"V =V A’V =k, and the Koszul complex of V reads as a CD

f@Ery) —— frey— fye
fRu > fo

0 —— S(V)@kk(zAy) —— S(V) @k (kx ® ky) —— S(V) @ k > k > 0
0 — k[z,y](2) ———— K|z, y]|*?* (1) —— K]z, y] s k > 0,

the bottom row of which coincides with the one in E.g. 7K.6, and hence exact.

We will show
Theorem: The Koszul complex of V' is exact, and hence S(V') is a Koszul ring.

ANEER

We first establish that S(V') forms a Koszul ring. We then give a criterion for a k-algebra
to be Koszul in /K.4., and move on to Koszul duality.

AK.1. We are to show that S(V') is Koszul, i.e., that the Koszul complex of V' is exact. Let
Vo <V, and let K(V,Vp) denote the sequence

0 —— S(V) R /\dimv% 4—dim Vg X S(V) R /\dimv*lvb - dim Vp+1 R
dim Vp
f@ WA Avgimy) — Z <_1)J+1f'Uj ® (v A A, A AVUdimvy)
j=1

S S(V) @ Vy — S(V) —— 0,
where ©0; is meant to delete the j-th term v;. it suffices to show

claim: Vi € N,
S(V/Vp) iti=0

0 else.

H(K(V,Vp)) ~ {

AK.2. We argue by induction on dim V. If Vi = 0, K(V, ;) reads 0 — S(V) — 0, and hence
the assertion holds.

Assume V > 0 and write Vo = V] @ kvg. Consider the d.t.
(1) K(V,Vi) = K(V, Vi) — cone(vg) — K(V,V1)[1]
with vy denoting the multiplication by vy on S(V).
Lemma: cone(vy) ~ K(V, 1}).
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Proof: Recall that A"V = AY (V) @ kvg) =~ (A'V)) @ {A"T1V]) @ kug} via
vl/\-~-/\vi+vo/\w1/\---/\wi_1 < (v1/\~--/\vi,w1/\~--/\wi_1®vo).

Define ¢~ : cone(vy) " = K(V, Vi)' @ K(V, V1)~ = {S(V) @ A" 'Vi} @ {S(V) @ A'V1} =
S(V) ®k A'Vp via

(fR WA Avi—1),g@ (Wi A Awy)) = fR (o Avp A= Avi—1) + g ® (wy A=+ Awy).
Then

e )
(f ® (’Ul /\ . /\ 'Ull)) | conC(’UO) /UO d

—Z +1f’U®’U1/\ /\@j/\---/\vi_l)

)

fv0®(v1/\~--/\UH)+Z(—1)’““gwk®(wl/\m/\wk/\m/\wi)

¢t — j+1 .
— —Z(—I)J ij@(U()/\?Jl/\"'/\'Uj/\"'/\Ui_l)+fvo®(’Uo/\’l)l/\"'/\vi_l)
j=1

+Z(—1)k+lgwk®(vo/\w1/\---/\lijk/\---/\wi)
k=1

which coincides with

dl_{(VV (f@@Wo AL A Avim1) + g @ (wi A= Awy))

= (d;{i(v,vo) © ¢_Z)( (

Thus ¢ : cone(vg) — K (V,Vp) gives an isomorphism in C(S(V)).

f&W A Avi_q)
g®(w1/\/\wz)))

A.3. To finish the proof of claim AK.1, the d.t. K.2.(1) now induces, as it is S(V')-linear, a LES
(1) o= HY(E(V, W) = H(E(V, V) = H(K(V, Vo)) = HT YK (V. W) —

By the induction hypothesis

H(K(V, V) = {§<V/ ) ifi=0,

else,
and hence (1) yields that H™(K(V,V;)) = 0 Vi > 2, and an exact sequence
0 — H (K (V. Vo)) = S(V/Vi) = S(V/V1) — H'(K(V, Vh)) — 0.

Then H-Y(K(V,Vp)) = 0, HY(K(V, Vp)) =~ S(V/V1) /veS(V/V1) =~ S(V/V}), and claim A.1 holds,
as desired.
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AR.4. Let A =[],y 4i be a positively graded k-algebra with Ay semisimple. YM, N € AModgr,
recall that AModgr(M,N) = {f € AMod(M, N)|f(M;) C N; Vi € N}.

For j € Z put M>; = [];5; M; and M; = [[,.; M;. We regard Ay as a graded A-module
A/A>O -

Proposition: The following are equivalent:
(1) A is Koszul.

(ii) Vi, j € 7 with i # j, ExtiAModgr(Ao,Ao(j)) =0.

Proof: (i) = (i) Let --- — P™' — P — A; — 0 be a Koszul resolution of Ay. Thus,
each P~*, i € N, is graded projective over A with P~ = A(P~*);. Then, Vi € N, Vj € Z,
Exti‘Modgr(Ao, Ap(j)) = H' (AModgr(P*, Ao(j))-

For j # i let f € AModgr(P~", Ag(j)). As (Ao(j))i = (Ao)i—; =0, flp-1), = 0. Then f =0
as P~ = A(P™);.

(ii) = (i) We will construct a Koszul resolution P* of Ay by induction on ¢ € N in such a
way that {ker(d~": P~" — P~"1)}, = 0.

First define
POo—A P A —— 0

|

A/Aso
Then ker(d) = A-g, and hence {ker(d®)}, = 0.

Assume done up to i: one has an exact sequence
pri T prt T PO Ay 0
with all P~9 = A(P7);, j € [0,i], graded projective over A and {ker(d~")}; = 0. We will
construct a graded projective P~0F1 and d=0+V . p=(+1) — P~ guch that {ker(d=(+1)},; =
0. Put K = ker(d™*). We claim

(1) K - AKZ'+1.

Just suppose not. Put K' = AKjyy, and let s = min{j > i+ 1|K; > K}}. As K = K. by
the induction hypothesis, the A-module structure on K/K' factors through A/A-¢ ~ Ay, and
hence K/K' is a semisimple Ap-module. Then, K;/K is an Ap-direct summand of K/K’. Let
L be a simple Ag-module such that L(s) is an Ag-direct summand of K/K’. One then obtains
in AModgr

K -5 K/K 20 K KD 220 Lis) —— Agls).



On the other hand,
AModgr (K, Ag(s)) ~ Ext’{oae (Ao, Ag(s))  par décalage
=0 by hypothesis as s > i 4+ 1, absurd.
Namely, one has exact sequences
(2) 0— K— P " —im(d™") =0,
(3) 0 — im(d™") — P~ — im(d~") — 0,

ey

0 —im(d™!) — P° — Ay — 0.
From (2) one obtains a LES
AModgr(P~, Ay(s)) — AModgr(K., Ag(s)) — Extygoags (m(d ), Ao(s))
— EXt}LXModgr(P_iv Ao(s))
with
AModgr(P~", Ag(s)) = AModgr(A(P~");, Ag s))

{
=0 as (Ao{s))i = (Ao)is
= Extypioaq (P~ Ao(s)) as P~" is projective,

and hence AModgr(K, Ay(s)) ~ Extyyioqe (im(d™"), Ag(s)). In turn, from (3) one obtains a
LES

EthAModgr(P_H_l’ A0<S>) — EXt}élModgr(im(d_i)7 A0<8>) — EXtiModgr(im(d_i+l)7 AO(‘S))
— EXt2AModgr<P_i+l’ A0<S>>7

and hence Extlyyoq,(m(d™), Ag(s)) ~ Ext?yoqq (im(d ), Ag(s)). Repeat to get
EXtiModgr(im<d_i+1)7 A0<8>> == EthﬁlModgrOm(d_l)? A0<S>) = EXt’ZrI\}[odgr(A()? A0<S>)

Define now
P*('L’+1) ............ d ,,,,,,,,,,,,,,,,,,, 5 P*Z’

| J

ARy, Kig1n —» AKiy1 = K.

It remains to check that {ker(d~¢*Y)},,; = 0, which follows from a CD

—(i+1) -G+ —1

z+1 \ K

(A X 4o Kz—i—l)z-i-l
ll

(Ao ®@a9 Kig1)igr g Kig.
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A ifi=0,

AK.5. Let A be a Koszul ring, A =[] 0 ol
else.

€L

A’ a dg-algebra with d4 = 0 and A’ = {
Let & = AMod®*(B(Aq), B(Ao)) = [ [,y € with
= AMod'(B(Ay), B(A))
= AModgr(B(Ao), B(Ao)[i]) = {f € AMod(B(Ao), B(Ao)|f(B(Ao)’) € B(Ao)'™" Vj € Z}
— AModi(B(Ao), B(Ao)) by E.g. K16
= [[ AMod(B(Ao)’, B(Ao)™*)

JEZ

and dg : € — & such that Vf € £, def = dpa,) o f — (—=1)"f o dp(a,). Under the composition
product (€,dg) forms a dg-algebra as in 7K.3 [Iv, 1.8.3, p. 60]:

gi X 5.7 ...................................................................................... 5 E’H']
I I

AModgr(B(Ay), B(Ag)i]) x AModgr(B(Ay), B(Ao)[j]) — AModgr(B(A), B(Ao)[i + j])
(f.9)¢ » f~g=flilog,
(€,dg) forms a dg-algebra: Vf € £, g € &7,

de(f ~ g) = dpay) o (f ~ g) = (=1)(f ~ g) o dp(ay)
= dp(ag © flilo g — (=1) flj] 0 g o dp(ay)

while

(def) = g+ (=1)'f ~ (deg) = (de f)[jl o g+ (=1)'f7 + 1] o deg

= (dpagyo f — (— ) 'fodpua)lilog+ (1) flj +1] o (dpay) 0 g — (—1)/g o dpay)
= (dp(ag) © Nl 0 g = (=1)'(f o dpag))ls] 0 g + (=1)'fj + 1] o dp(ay) 0 g
— (= )Z”f[JJr 1] o godpay)),

and hence dg(f — g) = (def) — g+ (=1)'f ~ (deg).

Recall also from K.16 that B(A) = 0 unless j < 0: B(Ag) = ([{,c P-ili])! = [z P23 =
P}, and hence &' = [],., AMod(B(A)', B(A,)"**). Also,

H(€) = H'(€%) = H'(AMod*(B(Ao), B(4)))
~ Kag(A)(B(Ao), B(Ao)[i]) by Ex. J.14.(ii)
~ Dyg(A)(B(Ao), B(Ao)[i]) by Ex. K.17.(ii)
~ Dag(A)(B(Ao), Aoli])
~ Kag(A)(B(Ao), Aoli]) ~ H'(AMod*(B(Ap), Ao))

by Ex. K.17.(ii) and Ex. K.14.(ii) again
~ H'(AMod*(B(Ay), Ag))
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regarding B(Ag) as a projective resolution of Ay:

d=t —it+1 -
S B(Ag) " U pray)it 20 s B(A)) —— 0 —— ...
Il Il Il

sz PO i+1 P(())

With davods(B(40),40)f = dag © f — (=1)"f o dpay) = da, o f + (1) f odpuy if f €
AMod*(B(A), Ag) = AMod(B(Ag)~*, Ag). Thus,

(1) HY(€) = Ext’, (Ao, Ay)

K(A)(B(Ao), Ao[i])

K(A)(B(Ao), B(Ag)[i]) by K.6

HZ(AMOd.( (Ao), B(Ao))).

12

12

12

Now, using the grading on A, Vk,j € Z, put

EF = AMod}(B(Ap), B(Ay)) = {f € AMod(B(Ay), B(Ao))|f(B(Ao),) C B(Ao)sth Vi, j € Z}
= {f € AModgr(B(Ao){j), B(Ao))|f(B(A)") C B(Ay)™™" VI € Z}.

Let £ = 1] &l and '€ = [[.., & a dg subalgebra of £. Regarding each £; as a complex

€L~ ) JEZL J

such that des f = dpag) o f + (— M1 fodpay Vf € &), one has

H'(£7) = Kg(A)(B(A0)(4), B(Ao)i])
~ K () (B(A) ), Aoli]) = Bxty . (Ao (), Ao)
=0 wunless i # —j by the Koszulity of A .4,

and hence, Vi, j € Z,

0 else.

- {Hi(g:i) — Extly (Ao, Ao(i)) if j = —i <0,

Then, again,

Hi(’S) _ {HZ(]_[J 5;) = Hi(é':i) = Extfﬁl,gr(AO(—i), Ay) = Extf47gr(A0, Ap(iy) ifi >0,
0 else.

Moreover, letting £= ] denote the truncation of £°; at degree j, one has qis’s

Y Y —

]

— 5{;1 — ker(dg. ) > 0

| !

2\

e}
~
T
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—~
o
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Thus,

(2) € =en &+ Wjen &7 —— e BV ()

JEL ™ ]

with . '

H7('€)[j] = Ext (Ao, Ao{—3))lj] if j <0,
0 else.

H(&7)[5] = {

Letting C =[] Sffj be a dg-subalgebra of 'E, (2) reads as qis’s of dg-algebras

JEZ

(3) €0 L, H(E) i),
in which case we say dg-algebra '€ is formal.

Assume now that A is left noetherian. Then, taking a graded A-projective resolution of Ag
of finite type, one obtains

(4) Ext’y (Ao, Ag) = [ [ Extly . (Ao(j), Ag)  [NVO, 2.4.7, p. 29]
JEZL

= Ethél,gr(A0<_i>7 A()),

where Ext’, ,. denotes Ext’jyj 4, for short. Then H(€) ~ Ext) ,.(Ag(—i), Ag) from (1), and
hence ;. H7(E7)[j] = [, H(E)[—i] in (2). Equipping [];., H'(€)[—4] with a structure of
dg-algebra with d = 0 such that

HH(E)[—i) X W (E)[=g)  HH ()i - j

) Extly ge (Ao, Ao (i))[i] x Bxt?y (Ao, Ap(j))[ ] Ext'y?, (Ao, Ao + ) [~i — ]

Kag(A)(B(Ao), B(Ao){i)[—1]) x Kag(A)(B(Ao), B(A0)(7)[=j]) = Kag(A)(B(Ao), B(Ao)(i + j)[—i —j])

L

(f,9) > f)=ileg.

yields

Corollary: If A is left noetherian, £ is formal:

£+ g ¢ T [, HI(E) ).

R.6. Koszul duality

Keep the notation of R.5 with A left noetherian. Thus, H(E) = [[,., H(E)" is a dg-algebra
with H(E)" = HY(E)[—i] Vi and dys) = 0. One can further Z-grade H(E), written with sub-
scripts, such that H(E)? = H'(£)[j]. Then

H(E)! {EXtiA,gr(Ao, A(i))[—i] ifi=—j €N,

i~ 0 else.
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The multiplication on H(E) is given by the composition product among the H(E)! = H'(E)[—i] =
Ext g (Ao, Ao(i))[—1] as described in K.5(5). We let Cqg o (H(E)) denote the category of graded
dg H(E)-modules

Let now E(A) = [[,c, E(A); be a graded algebra with E(A); = Ext’y (Ao, Ag) under the
composition product. By the Koszulity of A one has E(A); = BExt) ,.(Ao, Ag(i)), and hence
one may identify H(B) and E(A) as rings. Let Cg (E(A)) denote the category of complexes of
graded E(A)-modules, and let Dy, (E(A)) denote the derived category of graded E(A)-modules.
Define a functor F' : Cyg g (H(E)) = Cu(E(A)) by setting, VM € Cyg o (H(E)),

(1) FM) = [[F(M)§ with F(M); = M7,

jez
where ./\/lZ_J;J is just an abelian group. Let m € F(M)} = /\/ll_tj and x € E(A);. Under the
identification of E(A) and H(E) as rings, z lies in H(E)*,. Then zm € M:ij = F(M)!,,,
and F'is well-defined. In particular, Vi € Z,

(€)Y, =E(A) ifi=0,

else.

F((E) = [[H(E) = {OU !
Tlius', F(H(E)) = f(A) As Dy (H(E)) = (H(E)) and Dy, (E(A)) = (E(A)) by 7K.2, one
obtains an isomorphism
(2) DF : Dyger(E) = Dy (E(A)).
Let n € Z. Yi,5 € 7,
(DF)(M[n])j = (M[n])=) = MZ7*" = (DF)(M);™ = {(DF)(M)[n]}},
and hence
(3) (DF)(M(n]) = (DF)(M)]n],
while
(DF)(M(n)); = (M(n)Z) = M} = (DF) (M) = {(DF)(M)(=n)}; ™"
= {(DF)(M)(=n)[-n]}; by (3),

and hence

(4) (DF)(M(n)) = (DF)(M)(=n)[-n].

Put A' = E(A)°P. Recall now equivalence D(A) ~ Dgy(A) from 7K.4.(ii), under which regard-
ing Ao as living in Dag(A), (4g) % (£9) from /K3, and Dyg g (E%) = Dag e (H(E)™)
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from A.5. Composing with (2) one obtains Koszul duality K:

B(Ao)]l‘®gop?

Dgr(A) = Ddg,gr(A) <fDdg,gr(gOp) = Ddg,gr(H(5>0p) —= Dgr(A!)

© ] J J J

(o) —— (A0}~ () - —; (4),

RAMod,gr® (Aop,?)

Theorem: K(Ay) = A'. VM € (Ay),Vn € Z,
K(Mn]) = K(M)[n], K(M(n)) = K(M)(=n)[-n].

AR.7. Keep the notation of K.6. One has isomorphisms of rings

(1) (A" = AModgr (A, Ag)® =~ AgMod(Ag, Ag)P +— Ay

Ta < I a.

Equip AgMod(A, Ag) with a structure of (A, Ag)-bimodule such that afb = f(7a)b Vf €
AoMOd(A,Ao), Ya € A, b € Ao, and let A% = HieZ(A®)i with <A®)l = AoMOd(A_i,A0>
Vi, which is a graded A-module: A;(A®); C (A%);4;.

As Ay is semisimple, Ag is injective over Ayg. VM € AMod, one has
(2) AMod(M, AgMod(A, Ag)) = AgMod(M, Ag) via ¢ — “m+— ¢(m)(1)”

with inverse f — “m — f(?m)”, and hence AgMod(A, Ay) is injective in AMod. Moreover, (2)
induces, VM € AModgr,

141\/[0(1(]\[7 14()1\/[0(1(147 A())) — AoMOd(M, Ao)

® ] ]

AModgr(M, A®) » AgMod(My, Ao).

~

Thus, A% is injective in AModgr.

Lemma: K(A%) = (A").
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Proof: One has
K(A®) = RAMod, gr*(Ag, A®) = RAModgr*(Ag, A®) = [ [ Dar(A)(Ao, A®[i)

€L

= [ Extly .. (Ao, A%[i])
iz
= AModgr(Ag, A®) as A® is injective in AModgr
~ AoMod(Ag, Ag) by (3)
~ Ay as left Ap-modules, where the structure on AgMod (A, Ag) is given by
af = f(?a), which is compatible with the structure of left AjMod(Ay, Ag)°?-

module such that o f = f(¢(?)), ¢ € AgMod(Ay, Ay)°?
~ (Ao by (1).

R.8. Keep the notation of K.7.
Corollary: If A is left noetherian Koszul, A" remains Koszul.

Proof: Vi,j € Z,

Extiy . (Ao, (4)0(7)) = Der(A) (Ao, (Ao (5)[i]) by .10
= Dy (A) (A%, A% (=j)[i = j]) by K.6,7
—Ext’Aér(AO A®(—j)) by K.10

=0 unlessi—j=0as A? is injective K.7.
AR.9. Let B = [],. Bi be a positively graded ring with B, a semisimple subring. We say B is
quadratic iff
(i) B is generated by B over By,
(ii) ker(Tp,(B1) - B) = (ker(Tp,(B1) - B) N (B, ®p, B1)),
in which case let us denote ker(Tpg,(B1) - B) N (B ®p, B1) by Rp.

We say B is left (resp. right) finite iff each B;, i € N, is of finite type over By as left (resp.
right) module.

For a By-bimodule V' let VY = BoMod(V, By) (resp. YV = ModBy(V, By)) equipped with a
structure of By-bimodule such that afb = f(?a)b (resp. afb = af(b?)) Va,b € By Vf € VV. As
By is semisimple, if V' is of finite type over By as left (resp. right) module, V'V (resp. VV) is of
finite type over By as right (resp. left) module.

As By is semisimple, one has bijections

(B1)Y ®g, (B1)” = (B1 ®p, B1)" via f®gr “a®b glaf(h))”,
Y(B1) ®p, ' (B1) = Y(B1®p, B1) via f®g— “‘a®b— f(g(a)b)”.
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Put Rz = {¢ € (B1 ®p, B1)"[¢(Rp) = 0}, “Rp = {¢ € V(B1®5, B1)|[¢p(Rp) = 0}, and
let B' = Tp,((B1)")/(Rg), 'B = Tg,(Y(B1))/(*Rg). Thus, if B is a left (resp. right) finite
quadratic ring, B' (resp. 'B) is a right (resp. left) finite quadratic ring.

Lemma [BGS, Rmk. 2.8]: If B is a left (resp. right) quadratic ring, '(B') ~ B (resp.
(‘B) ~ B).

Proof: Assume that B is left finite quadratic. Thus, B = Tp,(B1)/(Rp), B' = T, ((B1)")/(R3),
and '(B') = T, (V((B1)Y))/(*(Rp)). As By is semisimple and as B is of finite type over By,
one has an isomorphism of left By-modules

By = Y((B1)Y) via brev, with ev,(f) = f(b) Vf € (By)".
Likewise, B; ®p, B1 — V((B; ®p, B1)"). Under those identifications one has

Ry < BY ®p, BY = (B ®p, B1)",
“(Rp) = ~(Rgp) <V((B1)") @5, ' ((B1)") = B, ©p, Bi.
Then +(R%) = {r € B, ®p, Bilev.(R3) = 0} = {x € B, ®p, B1|f(x) = 0Vf € R} > Rp.
As Rp is a direct summand of By ®p, B; and as B; ®p, By = *((B; ®p, B1)*), we must have
Y(R$) = Rp. Thus, '(B') = B.
Likewise, if B is right finite quadratic.
A.10. One has
Theorem [BGS, Cor. 2.3.3]: A Koszul ring is quadratic.
A.11. Moreover,

Theorem [BGS, Th. 2.10.1]: For a left finite Koszul ring B one has B' ~ E(B)°® =
EXt.B<BO7 Bo)op.

K.12. Back to our Koszul algebra A, our notation A' is compatible by .11 with the one given
in AR.9 to yield

Corollary: If A is left finite, one has an isomorphism '(A') ~ A of graded k-algebras.

AK.13. Remarks: (i) For our Koszul algebra A, ev, : A® — Ay, a € A, is not left Ag-linear.
Neither is the map A® — A® via f — af is left A-linear.

(ii) Assume for the moment that k is perfect. Then semisimple A is separable over k [CR,
Cor. 7.6, p. 145], and hence the reduced trace form tr, i : Ag x A9 — k is nndegenerate [CR,
Prop. 7.41, p. 165]. Thus, one obtains an isomorphism of left Ag-modules

(1) Ayg = Mody(Ag, k) via a— tra,x(?a),

where the left Ap-module structure on Modg(Ag, k) (resp. Ap) is given by ay = ~v(?a) (resp.
the left regular action a?); it is injective by the nondegeneracy of the reduced trace form, and
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hence bijective by dimension. Then in /K.7(3)
AoMOd(M(), Ao) = 1401\/.[Od(.]\407 MOdk(Ao, k)) —_— MOdk(Mo, k)
(2) o s “m > d(m) (1)

“mi— f(Tm)” < ' f

In particular, A® = [[,(A®); with
(3) (A®)z = AOMOd(A_Z‘, Ao) ~ MOdk(A_i, k) = (A—z)*

One show as in [BGS, Prop. 2.2.1] that (A')°P remians Koszul: Vi, j,
(4) 0 = Exct{ yyop (407, (A)g7 (7)) umless i = j
= EXtZ(A!)OP,gr,rgt((A!)g?rgm (A!)g?rgt <]>)7

where rgt stands for regarding those as right modules. Set

(5) (AY) = E((A)P) = {{(A)PY}™ = B(E(A))
= Extl o (A5, (A)5) = H Ext{ g0 (407, (4)57)

= T T Bt o (A9 (A9 )

= T Bt (AN (A9)7@)) by (4).

One shows as in /R.6 an equivalence

(6) Dy ((A')) o Dy e (A),
where Dy, 1ot (A) denotes the derived category of graded right A-modules, under which
(7) (ANgr = AR = []A)

with a graded right A-module structure on the RHS given by fa = f(7a), f € A%, a € A.
For a graded right A-module M with each M, finite dimensional let M® = [[.(M?¥); with
(M®); = ModAg(M_;, Ag) =~ Mody(M_;,k) = (M_;)* as in (2), ModA, denoting the category
of right Ap-modules. Letting ModgrA denote the category of graded right A-modules, one has
(8) ModgrA(M, Ay,,) ~ ModAg(Mo, Ag) as in K.7(3)

~ (My)* asin (2)

= (M?%)o ~ ModAy(Ag, (M?®)y) ~ ModgrA(A, M?).
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Then

Ext{ gryon g ((A)0°, (A7) (7)) 2= Dye ((A) ) ((A)P, (AP (i) [a])
~ Dir gt (A) (Arg, Al (—1)) - by (6), (7)

~ Dirgt(A) (A, (A ) (—1)) by (8)

~ ModgrA(A, (A )i (—1)) as A is projective in ModgrA

= {(Ar)ia (=0 }o = {(A)ig )i = {(Ah) i} = (A)™ ~ As.

Thus, one obtains an isomorphism of graded k-algebras
(9) (A ~ A,
which is consistent with R.12.

K.14. E.g: Let V be a finite dimensional k-linear space, and let A = S(V') = Sg(V') the sym-
metric k-algebra over V. Recall from 7K.7 the Koszul complex of V', a projective A-resolution
S(V) ®x A®V — k of Ay =k with =0+ : S(V) @, ATV — S(V) @ AV via

i+1
@ (U A - Avigr) = > (=10 @ (0 A AT A Avig),
=0

where v is to denote deleting the term v;. Thus, Vi € N,
Ext’ (Ao, Ag) = H'(S(V)Mod(S(V) @i A*V,k)) ~ H' (Mod(A*V, k)) ~ H ((A®V)*).
Vo € S(V)Mod(S(V) @k A°V, k),
i+1
S(V)Mod(d™ "V k) (¢) = ¢ od ) =Y (1) g(av; @ (11 A+ ATy A+ Aviga)
5=0

i+1
—E D/ ;0(x @ (v Ao ADj A= Avy1)  as 2vj = v;a

and as ¢ is S(V)-linear
=0 aswv; €V = A, annihilates Ay =k,
and hence dsymoas(v)zeavik) = 0. Then [BA, I11.11.5.(30)]
H(AV)) =2 {(AV) ) —— (AV)" +———— A(V7)
(O ANERWAN S
I y: —i fi A A S

det[(fx(vr))
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Now, the multiplication on Ext% (A, Ap) is given by the composition product such that

S(V)Mod(S(V) @k A®V, S(V) ®x A®V[i]) x S(V)Mod(S(V) ®k A*V,S(V) @k A*V[j]) — S(V)Mod(S(V) ®x A®V,S(V) @k A*V[i + j])

| |

Mody (A®V, k[i]) x Mody(A®V, k[4]) > Mody (AV, k[i + j])
(NV)* Zl NV > (/\”LZV)*
N"(v*)zi NV > N‘Hl(lv*).
Thus, F(A) ~ (AV)*, and hence
(1) A~ {(AV)*E )P ~ A(VF)
(S IANERIAN I
under A(V*) = {(AV)*}P via fi A A fp /—— l [BA, Prop. IIL5.7].

(~D)G detffi(v,)]
Then by A.12
(V) =1 (3(V)) = S(1).

Alternatively, S(V) = Ty (V)/(Ra) with Ry = {v @ w — w @ v|v,w € V}. Then S(V)' =
Te(V*)/(R%) by K.9. Let (v, ..., v,) is a k-linear basis of V and (fy,..., f,) its dual basis. If
>iiGiifi®fi € Ry &€k 0= (22 Giifi @ [i) vk @ vy — vy @ vg) = § — &~ Thus,

Ry={f® flfeV}
=1R, likewise,

and hence 7.9 yields
(2) S(V) = A(V*) = ACV) = 'S(V), H(A(V) = S(V) = (A(V))

(AV) = S(V*) = S(*V) = (AV)"
Or, writing AV = Ty(V)/(Rp) with Rp = {v@vlv € V},if 37, &;fi @ f; € Ry, 0 =
(22 Giifi ® fi) (v @ vg) = ki, and 0 = (32, ;& fi @ fi){(vx + 1) @ (vp +v1)} = & + &, for
k # [, and hence the 3rd isomorphisms.
Let now D}, 4(A) (resp. D}, ¢(A)) denote the bounded category of graded A-modules consist-
ing of those of finite length (resp. of finite type). The simples of AModgr and those of D} (A)
coincide [Z, Prop. 6.3.3]. Any simple graded A-module is annihilated by A-(, and hence an
Ag-module. Let M be an A-module and (M) the smallest triangulated subcategory of D(A)
containing M and closed under taking direct summands. If f € AMod(X,Y) with X,Y € (M),
Y & X[1] = cone(f) € (M). One has gis’ of rows

f

> 0 > X > Y > 0 > cone( f)
H H l H

> 0 > X » coker f > 0 >
| ) | |

> 0 > ker f —— cokerf > 0 >
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As the bottom complex is coker f@(ker f)[1], both coker(f) and ker f € (M). Thus, D} 4(S(V)) =
(k) and, as A(V*) is finite dimensional, D} 4(A(V*)) = (A(V*)) = D}, (A(V*)):

D (S(V)) Dee (A (V7)) Dy (AV) D (S(V7))
(k) ———— (A(V7)) (k) ——— (S(V"))
Il Il Il Il
Dya(S(V)) Dy a(A(V7)), Dy (AV) Dy s (S(V7)).

R.15. More generally,

Theorem [BGS, Th. 2.12.6]: Let A be a Koszul ring. Assume that A is of finite type over
Agy both as left and right modules. In particular, A; = 0 Yi > 0. Assume in addition that A' is
left noetherian. Then the Koszul duality induces an isomorphism

(A) = Dy, ¢(A).

b
Dgr f gr,f

AR.16. Our next objective is to find conditions for a k-algebra A to admit a Koszul algebra B
#FRH-equivalent to A.

Fix a finite dimensional k-algebra A. Set radA= N e called the radical of A. Thus,
“ideals of A
radA = n._.m [AF, 15.3, p. 166]. As A is finite dimensional,
"ideals of A
(1) A/radA is semisimple [AF, 15.16, p. 170,
(2) radA is nilpotent [AF, 15.19, p. 172].

Recall also that

(3) aring B is called local iff rad B is a left maximal ideal iff B\ B* <« B iff B\ B* =radB
iff Vb € B, either bor 1 —b € B* [AF, 15.15, p. 170],

(4) for an A-module M of finite type M is indecomposable iff AMod (M, M) is local
[AF, a remark, p. 144 and Lem. 12.8, p. 146]; M is finite dimensional as A is,

(5) if M is a finite dimensional A-module, radM = (radA)M [AF, 15.18, p. 171],
and hence M /radM is semisimple as an A-module,

(6)  a projective A-module P of finite type P is indecomposable iff P/radP is simple
[AF, 17.19, p. 201].

Thus, one has a bijection between the set of indecomposable A-projectives of finite type and
the set of A-simples.

AR.17. Throughout the rest of /K assume that our finite dimensional k-algebra A is graded:
A= HieZ A;.
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Definition: We say an A-module M is gradable iff there exists a graded A-module M such
that M ~ M as A-modules, in which case we call M a lift of M.

Proposition: Let M be an A-module of finite type. If M is indecomposable, a lift of M if any
1s unique up to isomorphism and a degree shift.

Proof: Let )~(~, }:/ be two lifts of M. As M is of finite type over A, AMod(M, M) ~
[1;cz, AModgr(X, Y (i)), under which write idy; = >, z;. As AMod(M, M) is local, some x;
must be invertible; AMod (M, M)\ AMod (M, M)* forms an abelian group AX.16(3). Then the
corresponding Z; € AModgr(X, Y (i)) is bijective, and hence X ~ Y (7).

AR.18. Proposition: If M is an indecomposable graded A-module of finite type, M remains
indecomposable as an A-module by degradation.

Proof: Put & = AMod(M,M). As M is of finite type over A, E ~ [[.., E; with E; =
AModgr(M (i), M). Thus, Ey is local. Vi € Z, one has

E,E_; = AModgr(M (i), M) AModgr(M (—i), M) = AModgr(M (i), M) AModgr(M, M (i)) C Ey.

We claim, Vi # 0,

For let a € E; and b € E_; \ 0. As E is finite dimensional, E_; = 0 Vj > 0, and hence there is
N € N with bV = 0 but b¥~! #£ 0. Then ab" = 0, and hence ab & (Ep)*.

Now, put m = rad(Ey) = Ep \ (Fo)* < Eg K.16(3). One has by (1)

(2) m+ ) Ei<E.
i#0
Put I =m+3},, E;. Thus, E/I is a quotient of Ey, and hence local; as rad(Ep) is a maximal

left ideal of Ej, the radical of any quotient of Fy remains a maximal left ideal of the quotient,
and hence the quotient is local A.16(3).

It now suffices to show that [ is nilpotent; for let z € E. If z € (E/I)*, Jy € E: 7y = 1.
Then zy = 1 — z for some 2z € I. If 2" =0, zy(1+ 2+ -+ +2""1) =1 — 2" = 1, and hence
rebB*. fl-—ze(E/])*,Jye E: (1—2)y=1. Then (1 —x)y =1— z for some z € I, and
hence 1—xz € E*. To see that [ is nilpotent, we follow an argument from [GG, Th. 3.1]. As E'is
finite dimensional, we may assume FE = Hie[— N,N] E;. As Ej is finite dimensional, m is nilpotent
AR.16(2), say m" = 0. We have only to show that, ¥V homogeneous 1, ..., Z@ent1)r+1) € 1,
T1... TN+ 1) = 0. Just suppose not. Put d; = deg(xy...2;), 7 € [1,(2N +1)(r +1)]. As
d; € [-N,N],Vie [, 2N +1)(r+1)], I <+ <dpp1: djy =---=d equal to, say j. Put
Y1 =1 - Tjyy Y2 = Tijg41 -+ Ligye ooy Y41 = Ljpg1 - - ":Ci'r-Jrl' Then

Tt

j=deg(z1...2,,) =deg(yr...yry1) =deg(zy...2;,) =deg(ys...y:) = ...
= deg(a:l .. .xil) = deg(y1),
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and hence 0 = deg(yy41) = --- = deg(y2). Theny,...y,41 € m" =0, and hence z1 ... Tnt1)(r+1) =
Yt Yr1 T +1 - - - TN+1)(r+1) = 0, absurd.

R.19. Proposition: For a graded A-module M of finite type any direct summand of M remains
gradable.

Proof: Write M = [], M; with each M; graded indecomposable. By K.18 each M; remains
indecomposable upon degradation. On the other hand, any direct summand of M as an A-
module is by Krull-Schmidt-# /& [AF, 12.6, p. 144] isomorphic to a direct sum of some M;’s.

AR.20. Corollary: Any projective A-module of finite type is gradable.

AK.21. Proposition: radA is homogeneous: radA = []._,(A; NradA).

1€EL

Proof: As A is finite dimensional, we may assume A = ZZN:_ ~ A; for some N with N # 0 in
k.

Assume for the moment that k admits a primitive N-th root ( of 1. Define a k-algebra
automorphism o of A via >, a; — Y., ('a;, a; € A;. Then o(radA) = radA. Let a = >, q; €
radA. Fix j € [-N, NJ; in particular, B(N) = B(¢./N) is Kgg(A)-flat. One has

N-1 N-1 N—-1
radA > Z (k) = Z ¢k Z Mg, = Z Z =k, = Z Z kg,
k=0 k=0 i k=0 i ik

As (sz\f;ol CO=DRY(1 — 9 =1 — ()N =0, ZkN;Ol -k = 0, ;IN, and hence a; € radA, as
desired.

In the general case, see [GG, Prop. 3.5].
&EH

We give a sufficient condition for a k-algebra to admit a Koszul algebra that is #kH-equivalent
to the algebra. Finally, we show that a Koszul grading if any on a ring is unique.

4.1 Let A = [[,., Ai be a graded k-algebra. Assume that there is a finite dimensional k-
linear space V' such that A is a graded S(V')-algebra of finity type with S(V') central in A and
positively graded such that deg V' = 1. In particular,

(1) A,=0 Vi<,
Put A= A/VA. Ask ~S(V)/S(V)sg, A is a finite dimensional k-algebra. By A.21

(2) rad(A) is homogeneous.

Each simple A-module is a direct summand of A/radA, and hence gradable by A.19, and hence

(3) each graded simple A-module remains simple over A upon degradation.
By (1)
(4) any simple graded A-module is annihilated by V',
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and hence

(5) the simple graded A-modules are in bijective correspondence with

the simple graded A-modules.

Let Li....,L, be a complete set of the representatives of simple A-modules. As rad(A) is
homogeneous, A/rad(A) is graded. Each L;, i € [1,7], is a direct summand of A/rad(A), and
hence gradable by /K.19, and let L; be a lift of L; to a graded simple A-module by (5). In
particular,

(6) AModgr(L;, L;(k)) =0 unless i = j and k = 0.

We will show

Theorem [Ri, Th. 9.2.1]: Assume that Ext]j,vgr(f/,-,f/j<l>) =0, Vi,j € [1,7] Yk, € Z with
k #1. Then A admits a Koszul k-algebra B graded #xH -equivalent to A.

4.2. Keep the notation of 4.1. VM € AModgr, let radgrM = N ker ¢, and define
¢p€ AModgr(M,L)
L simple

inductively radgr"™ M = radgr(radgr”M) Vn € N.
E.g. If k[z] is the polynomial k-algebra in x with z having degree 1,

C —a) =
rad k[z] _argk(a: a) =0

while
radgrk[z] = (z) as (x) is a unique maximal graded ideal.

Vf € AModgr(M, N),

(1) f(radgrM) C radgrN [AF, 8.16, p. 110].
If N is graded simple, f(VM) C VN =0 by 42.1.4, and hence

(2) VM C radgrM.
Also,
(3) radgr(M /radgrM) =0 [AF,8.17,p.110].

Lemma: Let M be a graded A-module of finite type and put M = M/V M.
(i) radM = radgrM as A-modules.
(i1) nQNradgr M =0.
(iii) The quotient M — M induces an isomorphism of graded modules
M /radgrM = M /radgrM.
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Proof: (i) As M is finite dimensional, radgrM is a finite intersection of ker ¢’s, ¢ € AModgr(M, L),
L graded A-simple. In particular, M /radgrM is graded semisimple over A. Then M /radgrM
remains semisimple over A by 4.1(3), and hence radM C radgrM.

On the other hand, radM = (radA)M by A.16(5), and hence homogeneous as rad4 is by
AR.21. Then M /radM is graded A-semisimple, and hence radgrM C rad M.

(ii) One has
radgr' M = rad’M by (i)
=0Vi>0 asrtadM = (radA)M and as radA is nilpotent K.16(2),
and hence radgr'M C VM Vi > 0 by (1). Then
radgr® M = radgr’(radgr' M) C radgr' (VM) C V>M  Vi>> 0.
On the other hand, M; = 0 Vi < 0 as M is of finite type over A. Then Vi € Z, 3k € N:
(VEM); = 0, and hence Ngen(V*M) = 0. Thus, N, (radgr®M) C Np(VEM) = 0.

(iii) By (1) one has a surjection M/radgrM = M /radgrM. On the other hand, from (2)
one has

M > M /radgrM,
l B
M/VM =M

and hence one obtains by (1) again and by (3) a surjection

M [radgrM — (M /radgrM) /radgr(M /radgrM) = M /radgrM.

As M is finite dimensional, M /radgrM ~ M /radgrM by dimension.

42.3. Keep the notation of 42.1. By <.2(iii) one has that A/radgrA is a direct sum of L;(n)’s,
i € [1,7], and for some n € Z. By renumbering if necessary we may assume each L;, ¢ € [1,7],
appears in A/radgrA. Recall now from [AJS, E.6] that

(1) if M is an indecomposable graded A-module of finite type, AModgr(M, M) is local.

Thus, Vi € [1,7], there is a graded indecomposable direct summand P; of A which is a projective
cover of L; [AF, 17.19, p. 201]. For let P be a graded indecomposable direct summand of
A, which exists by 4.2.(iii). Put E(P) = AModgr(P, P), and let M be a maximal graded
submodule of P. We show that the quotient = : P — P/M is a projective cover, i.e., M < P;
VL < Pwith P=M+ L, L =P. Write

P —"— P/M

s lN

L —> L/LNM.
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Then ims £ M. As ims + M = P, ims « P. Thus, s € rad(E(P)); write

AT
o lﬂ
, 9

P — P/M.

Then m = Tosot, and hence wo (1 — st) =0. If s € rad(E(P)), 1 — st € E(P)* by K.16(3),
and hence m = 0, absurd. Then s € E(P)* by AK.16.(3) again, and hence L = P, as desired.

One has

(2) pi/radgrf’i ~ L,
(3) AModgr(P;, L;j(k)) =0Vj € [1,7] Vk € Z unless j =i and k = 0.

Put L =[], Li, P =[[_, P;, and B = AMod(P, P)°P. As P is of finite type over A,

(4) B=][B; with B;=AModgr(P(j),P).

jEZ
By a graded version [AJS, E.4] of K.19 one has B graded #H-equivalent to A:
(5) AMod(P,?) : AModgr = BModgr.
In particular, the graded B-simples are the S;(n), i € [1,r],n € Z, with S; = AModgr(P, L;).

We show that B is Koszul.

Lemma: Assume the hypothesis of Th.<.1. ¥Yn € N,

radgr”(P) /radgr™™ (P) ~ H Li(n)®men  for some m(i,n) € N.
i=1

Proof: As LHS is graded semisimple by <&.2.(iii), we have only to show that

(6) AModgr(radgr™(P) /radgr™ ™ (P), Li(m)) = 0 Vi € [1,7],YVm € Z\ {n}.

V¢ € AModgr(radgr™(P), Li(m)), ¢(radgr"+'(P)) C radgr(L;(m)) = 0 by 4.2(1), and hence
(7) AModgr (radgr” (P) /radgr™ " (P), L;(m)) ~ AModgr(radgr™ (P), Li(m)).

We argue by induction on n. If n = 0, the assertion holds by (2). Let n > 0 and sup-

pose AMgdgr(radgr”(fi)/radgr”fl(p),Li<m))) + 0. The exact sequence 0 — radgr”P —
radgr" ' P — radgr" ! P /radgr® P — 0 yields by (7) a LES

0 — AModgr(radgr™ ' P /radgr™ P, L;(m)) = AModgr(radgr™ P, L;(m))
— AModgr(radgt™ P, L;(m)) — Exti"gr(radgr”’lp/radgrnp, Li(m)).
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Then
AModgr(radgr”]S Li(m)) < Extzvgr(radgr”’lﬁ’/radgr”ﬁ’, Li(m))

~ H Ext} . (Lj{n — 1)®mon-v ,L;(m)) by the induction hypothesis
= O unless m — (n — 1) = 1 by the standing hypothesis,
and hence

0 = AModgr(radgr"P, L;(m)) unless m=n—1+1=n
~ AModgr(radgr™(P) /radgr™ (P), L;(m)) by (7).

.4, Assume the hypothesis of Th. 42.1. Koszulity of B now follows from

Proposition: (i) By = [[._, Si.

(i1) Vn,m € Z, Extl ,,(Bo, Bo(m)) = 0 unless n = m.

(iii) B, = 0 Vj < 0.
Proof: (i) As P/radgtP = [[/_,L; and as P is projective, we have only to show that
AModgr (P, radgrP) = 0. Just suppose not, and let f € AModgr(P, radgrP)\0. As Nyenradgr™(P) =
0 by .2.(1i), imf ¢ radgr”(P) for some n > 2. Take minimal such n. Then imf C
radgr"~!(P), and hence f induces by .3

P — radgr" 1 P

radgr” ' P /radgr"P = [, Li(n — 1)®man-n.
Then n — 1 =0 by 4.3(3), absurd.
(ii) One has
Ext%,,(Bo, Bo(m)) = Ext} . H S;, H S;(m)) by (i)

~ Ext A,gr(L7 L(m)) by the equivalence
=0 wunless n = m by the standing hypothesis.

(iii) Let f € By \ 0. We argue as in (i). As ﬁneNgadgr”(f’) =0, imf ¢ radgr"P for some
n > 1. Take minimal such n. Then imf C radgr"~!(P), and hence f induces by .3

P(k) —— radgr"'P

r:audgr”_l]5/1"8Ldg1r”]5 =11 Z~L1<n — 1)®mGn-1),
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Thenn — 1 —k =0 by 4.3.(3), and hence k =n — 1 > 0.
£.5. Unicity of Koszul gradings

We show finally

Theorem: Let A be a finite dimensional k-algebra. A Koszul grading on A, if any, is unique;
if A = TlenAi = [,en A4} are 2 Koszul gradings on A, there is 0 € Algy (A, A)* such that

4.6. Throughout the rest let A = [[;cn Ai denote a positively graded k-algebra.

Proposition: If A is generated by A, as Ag-ring, Vi € N, (Asg)! = 1.5, An; we do not
assume Ay is central in A. If, in addition, A is is finite dimensional over k with Ay semisimple,
Asg =radA, and hence A ~ [[,oy(rad’A/rad"' A) as graded k-algebras.

Proof: Put I = A.(. By the hypothesis we must have I" = [],., A; Vn € N. Then ["/]" ~
A,. -

Assume now that A is finite dimensional over k. Then I™ = 0 Vn > 0, and hence I C radA
[AF, 15.19, p. 172]. On the other hand, A/I ~ Ay is semisimple, and hence radA C 1.

{.7. We finish the proof of Th. £2.5. As a Koszul grading on A guarantees the semisimplicity
of Ay, we have by 2.6 only to show that A is generated by A; over Ay. For that it is enough
to show that

(1) Asp = AA; left ideal of A generated by A;.
Indeed, (1) will yield

A= Ag+ Asg = Ay + (Ag + Aso) Ay = Ag + AgAy + AsgAy = Ay + AgAy + AA?
= Ag + AgA1 + AgAT + AsgA2 = Ag + AgA; + AgA® + AgAS + ...

Put I = A.y. We claim
(2) I=AA, iff VieZ\ {1}, AModgr(I, Ay(i)) = 0.

“only if” Let f € AModgr(/, Ag(i)) \ 0. Then 0 # f(AA;) = Af(A1) C (Ao(i))1, and hence
i =1. “if” Just suppose not. There is n > 1 with I,, > (AA;),, and let s > 1 be minimal such.
Then one has graded A-linear maps

I ——— I/AA

I/(AAl + ]>s)

with A annihilating I/(AA; +Iss). As Ap is semisimple, AModgr(I/(AA; + Iss), Ao(s)) # 0,
yielding a nonzero graded A-linear map I — Ay (s), absurd.
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Now let i # 1. Consider an exact sequence 0 — Ay — A — Ay — 0 of graded A-linear
modules. As A.( annihilates Ay(7), it induces AModgr(Ay, Ap(i)) >~ AModgr(A, Ay(i)), and an

LES

0— AMOng‘(Ao, A0<’L>) = AMOng‘(A, A0<’L>) — AMOng‘(A>0, A0<Z>) — EXt1147gr<A0, A0<’L>)

with EXt}47gr(Ag, Ap(i)) = 0 as A is Koszul. Thus, AModgr(A-q, Ao(i)) = 0, as desired.
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