Enhanced dielectric permittivity utilizing ferrorestorable polarization

Yuji Noguchi1* and Hiroki Matsuo 2

¹ Division of Information and Energy, Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan

²International Research Organization for Advanced Science & Technology (IROAST), Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto 860-8555, Japan *Corresponding author, e-mail: ynoguchi@cs.kumamoto-u.ac.jp

A self-powered system with a long lifetime offers an opportunity to develop a next-generation, standalone Internet of Things. Ceramic capacitors are promising candidates for energy storage components because of their stability and fast charge/discharge capability. Even for state-of-the-art capacitors, the energy density needs to be increased markedly. Improving breakdown electric fields provides a potential solution, but operations at such high fields relying on unchanged dielectric permittivity sacrifice the lifetime to some degree. Here, we report a ferrorestorable polarization engineering capable of enhancing effective permittivity over twice. Our experiments and *ab initio* calculations demonstrate that a defect dipole composed of 3d transition metal acceptors such as Cu³⁺ and oxygen vacancy in a prototypical ferroelectric BaTiO₃ ceramic is coupled with spontaneous polarization¹⁾. The resultant ferrorestorable polarization delivers an extraordinarily large effective relative permittivity beyond 7,000 with a high energy efficiency up to 89 %²⁾. Our work paves the way to realizing efficient ceramic capacitors for self-powered applications.

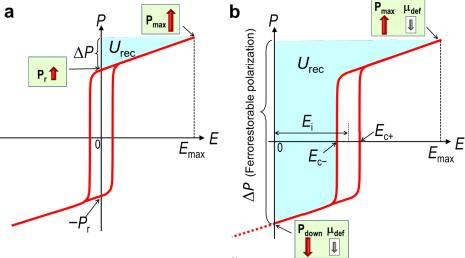


Fig. 1 | Ferrorestorable polarization². a, Typical P-E loop of ferroelectrics (pristine). b, Shifted P-E loop with an internal electric field (E_i) caused by the ground-state configuration of $\mu_{\text{def}} \parallel P_s$ (controlled). The controlled sample has a large U_{rec} as a result of ΔP , which is termed ferrorestorable polarization. The interaction between μ_{def} and P_s stabilizes the downwards polarization (P_{down}) at zero field, i.e., $P_0 = P_{\text{down}}$, because the P-E loop shifts to a positive field by the magnitude of E_i . E_i is defined as the average of E_{c+} and E_{c-} , that is, $E_i = (E_{c+} + E_{c-})/2$, where E_{c+} and E_{c-} are the electric fields at the extreme polarization switching currents in the positive and negative field sweeps, respectively.

- 1) Y. Noguchi, Y. Taniguchi, R. Inoue and M. Miyayama, *Nat. Commun.* 11, 966 (2020).
- 2) H. Matsuo, M. Utsunomiya and Y. Noguchi, NPG Asia Mater. 14 [1], 80 (2022).