MPMS3 Introduction

Contents

- ◆MPMS『3』とは ?
- ◆装置概要 ハードウェア外観 (CANタワー、電源類、プローブ) プローブ詳細 トランスポート 信号検出系(SQUID) ポンプコンソール (ヘリウムガス循環)
- ◆主な装置の仕様 温度の制御 / 磁場の制御
- ◆高感度検出方法 DC SQUID & 2nd Order Gradiometer
- ◆ソフトウェア外観
 MultiVu外観・制御 (Services.exeとは)
 サンプル交換ウィザード
 測定シークエンス
- ◆一般的な測定方法
 M vs H および M vs T
 付属の標準サンプルについて (Pd, Er:YAG)

- ◆サンプルの測定
 サンプルマウントの種類と方法
 シークエンス作成
- ◆測定時にご注意いただきたい点 再現性と条件固定について 初期磁場 / 初期温度 シークエンスの固定 Magnet Reset
- ◆使用終了時の設定
- ◆測定データの吸い出し 測定データ(.dat)
- ◆トラブル時の解析データ
 - ・測定データ (.dat)
 - ・ログファイル (BRLog.dat)
 - EVENT.LOG
 - ・測定シークエンス (.seq)
- ◆リモートコントロールについて TeamViewer

2

Agenda

- ・ イントロダクション
- ハードウェアの概要
- 装置の仕様
- 測定原理
- ソフトウェア外観
- 一般的な測定方法

Introduction

MPMS^BB_{kla?}

→ 磁気特性測定装置の最高峰(QD30年に及ぶ開発実績)
 → 誰もが使える 1.8K におけるサンプル自動測定
 → より高感度に, より高速に, より使いやすく

本装置で出来ることは?

→ 環境変化による(微小な)磁気モーメントの変化を測定する たとえば? <u>温度依存性、磁場依存性、(光依存性)</u>

4

Magnetic Property Measurement System

PPMSでの磁化測定用にVSMモーターが開発される

5

Hardware and System Combination

Quantum Design Japan, Inc.

MPMS3 User Seminar - March 2016

Transport

Quantum Design Japan, Inc.

8

Agenda

- ・ イントロダクション・ ハードウェアの概要
- 装置の仕様
- 測定原理
- ソフトウェア外観
- 一般的な測定方法

Specifications

- 温度範囲
- 冷却速度

- 1.8 K 400 K (< 1000 K oven)
- 0.01 K/min 30 K/min

RT => 1.8 K in 30 min !!

- 磁場範囲 \bullet
- 印加速度 •
- 残留磁場 \bullet
- BG磁化
- 最大測定磁化 2~3 emu

- \pm 70,000 Oe (7 Tesla)
- 700 Oe/s \leq
- \leq | 30 Oe |
- \leq 1x10⁻⁸ emu (\leq 2500 Oe, 10s)
- < $8x10^{-8}$ emu (> 2500 Oe, 10s)

Specifications

- 温度範囲 1.8 K 400 K (<1000 K oven)
- 冷却速度 0.01 K/min 30 K/min

RT => 1.8 *K* in 30 min !!

Cryostat Control & Sample Chamber Ctrl

Specifications

- 温度範囲
- 冷却速度

- 1.8 K 400 K (< 1000 K oven)
- 0.01 K/min 30 K/min

RT => 1.8 K in 30 min !!

- 磁場範囲 \bullet
- 印加速度 •
- 残留磁場 \bullet
- BG磁化
- 最大測定磁化 2~3 emu

- \pm 70,000 Oe (7 Tesla)
- 700 Oe/s \leq
- \leq | 30 Oe |
- \leq 1x10⁻⁸ emu (\leq 2500 Oe, 10s)
- < $8x10^{-8}$ emu (> 2500 Oe, 10s)

Specifications

Magnet Configuration

- 7 Tesla Solenoid Coil
- 常にマグネットと電源が接続されてた
 『ドリブンモード』、永久電流モード無し
- ガスヘリウムを利用したコイル冷却手法
- 軸方向に±2cmの範囲で0.01%の磁場均一性 (磁場は下から上が正)
- ULFオプション用のコイル内蔵
- ACオプション用のコイル内蔵

Helium level 100% -

Field Control with 7T Solenoid Coil

ドリブンモードである代わりに 独自開発の "Quick Switch" を使用

- Fast ramping 700 Oe/sSlow ramping 0.1 Oe/s
- ✓ Quick switch[®]
 - Low noise
 - Small L.He consumption
- ✓ Hybrid Magnet Controller
 - "D" control / "A" feedback
 - Smooth current ramp
 - Fast stabilization

S-VSM vs. Standard VSM vs. "DC-scan"

	SVSM	"standard" VSM	MPMS
Detection	Lock-in on 2f signal vs. time based on sinusoidal sample motion	Lock-in on 1 <i>f</i> signal vs. time based on sinusoidal sample motion	Fit to dc signal vs. position

SQUID detection schematic.

SQUID (Superconducting QUantum Interference Device)

超伝導量子干涉磁束計

as one of the most sensitive ΔB to ΔV converter

MPMS3 User Seminar - March 2016

2nd Order Gradiometer

VSM Measurement Mode (SVSM)

- 最も高感度で磁化の小さいサンプルでも測定可能
- 温度変化測定時により有効
- サンプルの固定は"しっかり"と、サンプル形状効果に注意

VSM Measurement Mode (SVSM)

Quantum Design Japan, Inc.

MPMS3 User Seminar - March 2016

DC-scan Measurement mode

- 生データの確認が可能
- サンプルの固定が容易で、ストローをホルダーとして使用可
- ゆっくり、バックグラウンドの差し引きが必要な場合も

DC-scan Measurement mode

• Looking at a single DC scan wave form:

Agenda

- イントロダクション
- ハードウェアの概要
- ・ 装置の仕様
- 測定原理
- ソフトウェア外観
- 一般的な測定方法

MultiVu (2.3.10.0) – MPMS3

- システム温度制御 •
- システム磁場制御 •
- サンプル宰制御 •
- SQUID制御 •
- シークエンス作成 •
- 自動測定 •
- データ閲覧 •
- グラフ描画 •
- オプション類制御 •

- CAN Manager

Measurements - contents

• 測定準備

- Sample rod and sample holder
- Sample size, shape, form
- Sample mounting and background contributions
- 測定モード
 - DC scan
 - **(**VSM**)**
- 一般的な測定 (M(H), ZFC/FC and M(T) sequences)
 - 温調制御
 - 磁場制御
- 標準サンプルについて
 - Pd standard
 - Er:YAG sandard
 - In standard

Typical measurements

- モーメントの温度変化 (*Moment vs Temp.*, MT測 定)
- 磁場中冷却とゼロ磁場冷却 (ZFC vs FC)

Typical measurements

モーメントの磁場変化 (Moment vs Field, M(H)測定)

・磁場相転移の観察 ・磁化ふるまいの磁場依存性

[MPMS3] VSM vs. DC Scan

	Pros	Cons	When to use
VSM mode	Fast; Constant field and temperature;	No raw data for post processing; Force on sample;	 Preliminary study to quickly gain the main picture; Measurement where high point density is desired (e.g. to define an irreversible point) Batch measurement for a large sample series; Sample with strong hysteresis such as superconductors and soft magnets;
DC Scan Mode	Raw data collected for modeling or diagnosis; Gentle on sample;	Slower; Moving sample in field and temperature variation	Close study of anomalies where modeling maybe necessary; Sophisticated background subtraction needed; Liquid samples; Straw sample holder;

Fundamentals in Magnetics and magnetic measurements

http://www.qdusa.com/sitedocs/appNotes/mpms/FundPrimer.pdf

Agenda

- ・ 実際のサンプル測定
 - サンプルマウント
 - マニュアル測定 / 測定シークエンスの作成

- 形状、大きさ
 - 測定誤差(測定不能)の原因になるため、注意すること 試料の大きさは <u>5mm以内</u>にすること
 形状効果によって計算値と異なる場合がある
 →アプリケーションノート1500-015を参照
- 位置合わせ
 - 試料固定時に中心位置にしっかり合わせる
 - 検出コイルの中心に試料が来るように合わせる(Sample Location)

→アプリケーションノート1500-010を参照

- 測定条件
 - 磁場変化の測定時は Sweep モードを使用しない
 - 試料のモーメントが小さい場合は振幅、積算時間および 回数を延ばす

固定方法

 i. 石英ホルダー

3∕ Quantum Design Japan, Inc.

固定方法
 i. 石英ホルダー

- 固定方法
 - ii.真鍮ホルダー

3⁶ Quantum Design Japan, Inc.

MPMS3 User Seminar – March 2016

Magnetization in Applied Fielf: "M vs H"

Sequences

- 測定データ保存先の設定
- 残留磁場に気を付ける

(Ramp in Oscillate mode, Magnet Reset)

- 磁場の設定は Stabilize at each field のみ
- 温度の設定はSweep(速い)、 Stepwise(正確)
- シーケンスを開始するときの初期状態は?
- 室温から10K以下の低温にする場合は10KでStable 後 600秒以上待ってから下げる
- シーケンス終了時の温度、磁場の設定
- <u>Magnet Reset.seq</u>の作成

ODI test sen sen	Sequence Commands:
Selected inc. 1	🖂 System Commands
Non Design "CAD Sound and DetayOD Lines date MT, day"	Call Sequence
Set Temperature 300K at 30K /min East Settle	Chamber Operations Bemark
Wait For Temperature, Delay 600 secs. No Action	Scan Field
SOUD VSM Moment (VSM) vs Temperature, 300K to 1.9K Sween Continuous, Auto-Tracking	Scan Temperature
SQUID VSM moment (VSM) vs Temperature 1.9K to 300K Sweep Continuous. Auto-Tracking SQUID VSM Moment (VSM) vs Temperature 1.9K to 300K Sweep Continuous. Auto-Tracking	Scan Time Sequence Message
New Datafile "C:\QdSquidVsm\Data\QDJ test data-MH.dat"	Set Field
Set Temperature 10K at 30K/min. Fast Settle	Shutdown
Wait For Temperature, Delay 600 secs, No Action	Wait
Scan Temp from 10K to 300K at 10K/min, in 30 steps, Uniform, Fast	
SQUID VSM Moment (VSM) vs Field 4 Quadrants -70000 De to 70000 De Step Linear Auto-Trac	🖃 Measurement Commands
End Scan	Log Data
End Sequence	Sigma Log Data ≔VSM
K N	Adv. Measure
	Center Sample Datafile Comment Moment vs. Field Moment vs. Temp. New Datafile

"M vs H" measurement (NiFe @ 5K)

Sequence command dialog window

\rightarrow Use M(H) and M(T) loop generator

SQUID VSM Moment vs Temperatur	e 🔀	SQUID VSM Moment vs Field	
Setup VSM DC Advanced		Setup VSM DC Advanced	SQUID VSM Moment vs Field
Temperature Control	Approx. Temperatures	Field Sequence Select Start/End Quadrant	Setup Advanced
Start 300 K	299.9 299.8		Centering Ranging Auto Tracking Stickur Autorement
End 1.9 K	299.7 299.6 299.5	-5000 H _{min} time time	Centering Scan at each field or interval (continuous)
Sweep Rate 3 K/min	299.4 299.3	Field Control	Time 10 min Fixed Range
C Stabilize at each Temperature	299.2 299.1	Sweep Rate 200 De/sec 0.0 416.7	Temperature 10 K
Sweep Continuously	298.9 298.8 298.7	 Stable at each field Stable at each field 1250.0 1666.7 1667 1683.3 	No Automatic Centering Select
Data Acquisition	298.6 298.5	C Sweep Continuously 2500.0 2916.7	Advanced Settings
Continuous Measuring	298.4 298.3 298.2	Data Acquisition 3333.3 3750.0 4166.7	Require Sweep Mode For Continuous Acquisition
Number of Temperatures 25	298.1 298	Uniform Spacing in Field 4583.3 5000.0 4592.2	Wait Time At 0 sec Restore
C Temperature 50 K	297.8 297.7 297.6	Wumber of Fields 25 Min to Max 3333 3	Approach Mode Linear V Defaults
Repetitions at each 1 Temperature	297.5 297.4	C Field Increment 50 De 2916.7 2500.0	Excitation Parameters
Keep all measurements	297.3 297.2 297.1	Repetitions at 1 2083.3 each Field 1666.7 1250.0	Peak Amplitude 2 mm
	297 296.9	Keep all measurements 833.3 416.7	Maximum Moment 1000 emu
Estimated Time = 01:41 (h:m)	.ines = 2982	Estimated Time = 00:21 (h:m) Lines = 61	OK Cancel Heip
Data Logging OK C.	ancel Help	Data Logging OK Cancel Help	

Post Measurement - Analysis

サンプル取出し

amber Status	Status	Control
300 K, Standby, Sealed	Pressure 760 1	or Seal
Press "Open Chamber" to do the following things:	Sensor Pira	ni Vent/Se
- Bring the sample chamber to room temperature - Vent the sample chamber - Move the transport to load position		Pump Co
)therwise, press "Skip >>"	State Sea	ed Vent Col
Open Chamber		
Open Chamber		

Purge & seal

Data:	C:¥QdSquidVsm¥Data
Sequence:	C:¥QdSquidVsm¥Sequence
Qmap:	C:¥QdSquidVsm¥Qmaps
BRLog:	C:¥QdSquidVsm¥MultiVu¥BRLog.dat
EVENT.LOG:	C:¥QdSquidVsm¥MultiVu¥EVENT.LOG
ZipLog:	C:¥QDLogs

42 Quantum Design Japan, Inc.

Latest Options for MPMS3

- MPMS3に対応したオプション
 - AC
 - Ultra Low field
 - Oven
 - FOSH
 - Rotator
 - ETO

MPMS3 options: OVEN

• Principle of Operation

- AC module measures AC response as seen by the SQUID when applying AC field
- Measurement performed at multiple locations (Z,C,T) in gradiometer to remove drifts and background signals
- **Option hardware** (in-field upgrade available)
 - AC module
 - Two separate coils in magnet for AC field and background signal compensation

Specifications

- Frequency range 0.1Hz-1kHz
- AC amplitude 0.1 Oe up to 10 Oe
- − Sensitivity $\leq 5 \times 10^{-8}$ emu
- $\leq \pm 1\%$ (moment), $\leq \pm 0.5^{\circ}$ (phase)

AC: Frequency dependence (Superconducting transitions)

AC Susceptibility X(T, f) RuSr₂GdCu₂O₈

Distinction between DC and AC measurement

"Susceptibility" = χ = slope of M/H curve Absolute χ_{DC} vs. local χ_{ac} ... they are not the same [χ_{ac} = dM/dH]

AC magnetometry

- Pr0.75La0.25Ni
- Ferromagnetic metal with Tc around 19.5 K
- Both χ' and phase φ shows maxima close to Tc
- Huge χ["] in phase transition region due to eddy current heating

Ref:

http://einrichtungen.ph.tum.de/E21/uebungen/magn etismus/ws03_04/skript/Mag0304_6.pdf

47 Quantum Design Japan, Inc.

MPMS3 User Seminar – March 2016

AC calibration standatd sample

✓ Er:YAG
 Paramagnetic
 insulator

$$\checkmark$$
 AC = DC

Measurement Parameters (AC)

49 Quantum Design Japan, Inc.

MPMS3 User Seminar - March 2016

MPMS3 options: OVEN

• Principle of Operation

Sample is mounted on heater stick which locally heats up the sample in high vacuum while the chamber is held at 280 K

- **Option hardware** (in-field upgrade available)
 - High Vacuum Unit
 - Oven sample rod & wired access port
 - Oven module
 - Oven heater sticks and mounting station
- Specifications
 - T-range 300-1000K
 - Sensitivity <10⁻⁶ emu

51

MPMS3 User Seminar - March 2016

MPMS3 options: AC + OVEN

MPMS3 options: Ultra Low Field (ULF)

Principle of Operation

ULF wizard

- profiles field inside sample volume using flux gate
- adjusts current in compensation coils to achieve requested field value and uniformity (iterating as required)
- **Option hardware** (in-field upgrade available)
 - Flux gate (and μ -metal shield storage)
 - ULF module
 - Two separate coils in magnet for field offset and curvature compensation

Specifications

- Field Uniformity ± 0.05 Gauss
- Target Field Range ± 5 Gauss

ULF

- Uniformity better than 50 mOe; Field setting accuracy ±(2 mOe + 0.5% of set field) with a range of ±20 Oe
- Allows for more detailed field dependence studies at low fields
- Data shows exceptional control & stability over both field and temperature

MPMS3 options: FOSH

- Allows sample to be illuminated by an external light source while making magnetic measurements
- IR to UV spectrum
- Sample bucket 1.6 mm diameter and 1.6 mm deep

MPMS3 options: Sample Rotater

- Allows sample to be rotated 360 degrees at all temperatures and fields
- Less than 1 degree resolution

MPMS3 Introduction

Maintenance

・ ほこり

- 万病のもとです。

- サンプルチャンバー内の清掃
 - 常にきれいに、壁面が汚いとノイズの原因にも
- ・ポンプ
 - ロータリーポンプのオイルチェック
 - ボールゲージにオイルを溜めない
- 排気ライン
 - 排気のゴムホースとインラインバルブのチェック
- ・ 0-リング
 - トランスファーラインとインサート
 - 排気系統
 - トランスポートトップ (サンプル交換口)

Trouble Shoot 1

- 測定中にノイズが出る
 - ホルダー、ロッドが破損している → ホルダー、ロッド確認
 - 試料の固定がうまく行っていない → 試料固定確認
 - サンプルチャンバー内部が汚い → チャンバー内清掃
 - チャンバー内部に空気がリークしている 酸素ピークの有無確認 → 0-リング確認
- サンプル温度が安定しない
 - 液体窒素が不足している → 窒素の確認、補充
 - 測定を行うと温度が上昇する → サンプルホルダの確認
 - CLTインピーダンスブロック → ボールゲージ流量確認
 - ポンプのオイルが無い → オイル確認、補充

Trouble Shoot 2

- ・ 降温レートが低い (<< 20K/min)
 CFEインピーダンスブロック or ポンプ劣化
 → CFEフロー、ボールゲージチェック
- 残留磁場が大きい
 - 直前の磁場の履歴による
 - → オシレートモード、マグネットリセットを使用する
- ソフトウェア不具合
 - フリーズ → 装置、PCの再起動
 - 明らかなバグ → 管理者に説明して弊社サービスまで
 - CANの通信障害 → ウィルス対策ソフトやドライバ干渉

'Ture' Moment

Resolution at Low & High Magnetic Field

Drift

