Two-numbers and Euler characteristics for quandles

Hiroshi Tamaru

Osaka Metropolitan University / OCAMI

8th Tunisian-Japanese Conference:
Geometric and Harmonic Analysis on Homogeneous
Spaces and Applications in Honor of Professor
Dominique Manchon
2025/October/27

Abstract

We study quandles in view of symmetric spaces.

Outline

- 2-numbers of symmetric spaces was initiated by Chen-Nagano (vs Euler characteristics).
- We are trying to extend this framework to quandles (2-numbers are easy to define).
- We define Euler characteristics for quandles, by extending those for symmetric spaces.
- We calculate them for several examples; prove some properties similar to the usual one.

Ref.

 Kai, Tamaru: "On the Euler characteristics for quandles", Internat. J. Math., 36 (2025)

Preliminaries - (1/3)

Review quandles and Chen-Nagano theory.

Def.

(X,s): quandle

 $:\Leftrightarrow X: a set, s: X \to \operatorname{Map}(X,X) such that$

- $\forall x \in X$, $s_X(x) = x$;
- $\forall x \in X$, s_x : bijection;
- $\forall x, y \in X$, $s_X \circ s_y = s_{s_X(y)} \circ s_X$.

Fact (Joyce)

A symmetric space is a quandle.

Def.

For a quandle (X, s) and $A \subset X$,

- A is antipodal : $\Leftrightarrow \forall a, b \in A$, $s_a(b) = b$.
- 2-number $\#_2(X) := \sup\{\#A \mid A \text{ antipodal}\}.$

Preliminaries - (2/3)

Ex (Sphere S^n)

• Any maximal antipodal is $\{\pm p\}$, so $\#_2S^n=2$.

Ex (Real projective space $\mathbb{R}P^n$)

• Any maximal antipodal is congruent to $\{[e_1], \ldots, [e_{n+1}]\}$, so $\#_2 \mathbb{R} \mathbb{P}^n = n+1$;

Note (good points)

- #2 is an invariant of quandles;
- $\#_2$ generalizes 2-rank initiated by Borel-Serre.
- $\#_2$ gives an obstruction for embeddings $(\exists f: X \to Y \text{ (embed.)} \Rightarrow \#_2(X) \leq \#_2(Y));$
- For symmetric spaces, $\#_2$ relates to $\chi^{\mathrm{top}}...$

Thm (Chen-Nagano 1988)

M : compact Riemannian symmetric space

$$\Rightarrow \#_2 M \ge \chi^{\text{top}}(M)$$
$$(\#_2 M = \chi^{\text{top}}(M) \text{ if Hermitian})$$

Preliminaries - (3/3)

Conjecture (Chen-Nagano)

M : compact Riemannian symmetric space

$$\Rightarrow \#_2 M \equiv \chi^{\text{top}}(M) \pmod{2}$$
?

Ex (Sphere S^n)

•
$$\chi^{\text{top}}(S^n) = \begin{cases} 0 & (n \text{ odd}) \\ 2 & (n \text{ even}) \end{cases} \le 2 = \#_2 S^n$$

Ex (Real projective space \mathbb{RP}^n)

•
$$\chi^{\text{top}}(\mathbb{R}P^n) = \begin{cases} 0 & (n \text{ odd}) \\ 1 & (n \text{ even}) \end{cases} \le n+1 = \#_2 \mathbb{R}P^n$$

Note

- We try to generalize the results/conjectures on symmetric spaces to quandles...
- In this talk, we define the Euler characteristics for quandles.

Definition - (1/2)

Def (cf. Joyce)

The displacement group of a quandle (X, s) is

• $\operatorname{Dis}(X,s) := \langle \{s_X \circ s_Y^{-1} \mid x,y \in X\} \rangle_{\operatorname{grp}}.$

Def.

The **Euler characteristic** of a quandle (X, s) is

• $\chi^{\mathrm{qdl}}(X,s) := \inf\{\#\mathrm{Fix}\,(g) \mid g \in \mathrm{Dis}\,(X,s)\}.$

Thm. (Kai-T. 2025)

(X, s) compact connected Riem symmetric space

$$\Rightarrow \chi^{\mathrm{qdl}}(X,s) = \chi^{\mathrm{top}}(X,s).$$

Definition - (2/2)

Idea of Proof (due to Hopf-Samelson)

- (X, s) cpt connected Riem symmetric space
 ⇒ Dis (X, s) cpt connected Lie group,
 ∼ X transitive;
- G compact connected Lie group, T maximal torus $\Rightarrow \chi^{\mathrm{top}}(G/K) = \#\mathrm{Fix}\,(T);$
- Moreover, $g \in T$ generator $\Rightarrow \chi^{\mathrm{top}}(G/K) = \#\mathrm{Fix}(g)$.

Ex. (Sphere S^n)

- $S^n = SO(n+1)/SO(n);$
- n odd: $T = SO(2)^{(n+1)/2}$, no fixed points;
- n even: $T = SO(2)^{n/2}$ fixes 2 points.

$$\begin{bmatrix} 50(2) \\ 50(2) \end{bmatrix} \bigcirc 55, \quad \begin{bmatrix} 1 \\ 50(2) \\ 50(2) \end{bmatrix} \bigcirc 54$$

Ex. (Real projective space $\mathbb{R}P^n$)

- $\mathbb{R}P^n = \mathsf{SO}(n+1)/\mathsf{S}(\mathsf{O}(1)\times\mathsf{O}(n));$
- Then the situation is similar to S^n ...

Examples - (1/3)

Ex. (trivial quandle)

- (X, s), $s_X := id$ (trivial quandle);
- Then $\operatorname{Dis}(X,s) = \{\operatorname{id}\};$
- Hence $\chi^{\mathrm{qdl}}(X,s) = \#X$.

Ex. (dihedral quandle)

- R_n : n-equal dividing points on S^1 ;
- R_n is naturally a subquandle of S^1 ;
- R_1 , R_2 are trivial:
- $n \geq 3$: $\chi^{\text{qdl}}(R_n) = 0 = \chi^{\text{top}}(S^1)$.

Ex. (discrete sphere)

- $DS^n := \{\pm e_1, \ldots, \pm e_{n+1}\};$
- It is naturally a subquandle of S^n ;
- This satisfies $\chi^{\mathrm{qdl}}(DS^n) = \chi^{\mathrm{top}}(S^n)$.

Examples - (2/3)

Ex. (discrete torus)

- $DT^n := R_{m_1} \times \cdots \times R_{m_n}$;
- It is naturally a subquandle of Tⁿ;
- $R_2 \times \cdots \times R_2$ is trivial;
- $\exists m_i \geq 3$ then $\chi^{\mathrm{qdl}}(DT^n) = 0 = \chi^{\mathrm{top}}(T^n)$.

Question

M compact connected Riemannian symmetric space

 \Rightarrow $\exists X$: a finite subquandle of M such that $\chi^{\mathrm{qdl}}(X) = \chi^{\mathrm{top}}(M)$?

Examples - (3/3)

Note

- $\chi^{\text{top}}(\text{cpt connected nontrivial Lie group}) = 0;$
- There are two related results.

Ex. (Core quandle Core(G))

- A group G is a quandle by $s_g(h) := gh^{-1}g$;
- $G \cong (\mathbb{Z}_2)^k$ then Core(G) is trivial;
- Otherwise, $\chi^{\mathrm{qdl}}(\mathrm{Core}(G)) = 0$.

Ex. (Generalized Alexander quandle $Q(G, \sigma)$)

• A group G is a quandle by

$$s_g(h) := g\sigma(g^{-1}h) \qquad (\sigma \in Aut(G)).$$

- $\sigma = \mathrm{id}$ then $Q(G, \sigma)$ is trivial;
- Otherwise, $\chi^{\mathrm{qdl}}(Q(G,\sigma))=0$.

Problems - (1/2)

Problems

- Calculate $\#_2$ and χ^{qdl} for more examples;
- Condition for $\chi^{\mathrm{qdl}}(X,s)=0$?
- $\#_2(X,s) \ge \chi^{\mathrm{qdl}}(X,s)$?
- $\#_2(X,s) \equiv \chi^{\text{qdl}}(X,s) \pmod{2}$?

Prop. (cf. Saito-Sugawara 2025)

(V, E): directed simple graph, $V = \{A_1, \dots, A_n\}$, A_i abelian group, Each $(A_i, A_j) \in E$ is labeled by $a_j \in A_j$ $\Rightarrow X := A_1 \sqcup \dots \sqcup A_n$ becomes a quandle by $s_{a_i}(a_i) = a_i + \text{label}(A_i, A_i)$

Ex. $(X,s) : \text{ quandle constructed from } \square_{m} \square_{m}$ $\Rightarrow \#_{2}(X,s) = \min\{m,n\}, \ \chi^{\text{qdl}}(X,s) = m$ $\bowtie_{M} \times M$

Problems - (2/2)

Note

- $\#_2(X,s) \ge \chi^{\mathrm{qdl}}(X,s)$ for the above example;
- $\#_2(X,s) \not\equiv \chi^{\operatorname{qdl}}(X,s) \pmod{2}$ in general...

Problem

Find a condition for quandles such that

- $\#_2(X,s) \geq \chi^{\mathrm{qdl}}(X,s);$
- $\#_2(X,s) \equiv \chi^{\operatorname{qdl}}(X,s) \pmod{2}$.

Problem (fantasize)

Prove a theorem for compact symmetric spaces using finite quandles, e.g.,

- find a nice finite subquandle $(\#_2 \text{ and } \chi^{\text{qdl}} \text{ are same with the ambient});$
- prove (in)equalities for such finite quandles.

Appendix

Thank you very much!

Ref.

- Bang-Yen Chen, Tadashi Nagano; "A Riemannian geometric invariant and its applications to a problem of Borel and Serre", Trans. Amer. Math. Soc. (1988)
- Konomi Furuki, Hiroshi Tamaru; "Homogeneous quandles with abelian inner automorphism groups and vertex-transitive graphs", Internat. Elect. J. Geom. (2024)
- Takuya Saito, Sakumi Sugawara; "Homogeneous quandles with abelian inner automorphism groups", J. Algebra (2025)
- Ryoya Kai, Hiroshi Tamaru; "On the Euler characteristics for quandles", Internat. J. Math. (2025)
- Hiroshi Tamaru; "Some properties of finite two-point homogeneous quandles", Procedings of TJC7, to appear
- Hiroshi Tamaru; "Discrete symmetric spaces and quandles", Sugaku Expositions, to appear