

Nilpotent Lie algebras obtained by quivers and Ricci solitons

田丸博士

大阪公立大学 / OCAMI

Magnitude 2025 (@大阪大学)
2025/Dec/22

Abstract

- quiver から nilpotent Lie algebra を構成.
(他の面白い構成方法を募集中)
- nilsoliton の存在非存在の判定をした.
(quiver から行列を作る. よい説明募集中)
- nilsoliton が存在 \Leftrightarrow 上の行列が “positive”.
(よい判定法 / 関連する話題を募集中)

- 溝口史華, 北山陽菜との共同研究に基づく.

Background - (1/2)

Def. (ARS = algebraic Ricci soliton)

A metric Lie algebra $(\mathfrak{g}, \langle , \rangle)$ is **ARS**

$\Leftrightarrow \exists c \in \mathbb{R}, \exists D \in \text{Der}(\mathfrak{g}) : \text{Ric} = c \cdot \text{id} + D.$

derivation, $D[\cdot, \cdot] = [D(\cdot), \cdot] + [\cdot, D(\cdot)]$

Basic Question

Study ARS on **nilpotent** Lie algebras:

- Classification is almost impossible;
- Construct examples;
- Give a condition for the existence.

Note (why ARS? (1))

$(\mathfrak{n}, \langle, \rangle)$ is nilpotent ARS

$\Leftrightarrow (N, \langle , \rangle)$ (1-conn., left-inv.) is **Ricci soliton**

i.e., $\exists c \in \mathbb{R}, \exists X \in \mathfrak{X}(N) : \text{ric} = cg + \mathcal{L}_X g$.

vector field

Lie derivative

Note (why ARS? (2))

$(\mathfrak{n}, \langle , \rangle)$ is nilpotent **Einstein**

⇒ \mathfrak{n} is abelian (and it is flat).

Background - (2/2)

Def.

A Lie algebra \mathfrak{g} is

- **2-step nilpotent** if $[\mathfrak{g}, [\mathfrak{g}, \mathfrak{g}]] = 0$, $[\mathfrak{g}, \mathfrak{g}] \neq 0$;
- **3-step nilpotent** if $[\mathfrak{g}, [\mathfrak{g}, [\mathfrak{g}, \mathfrak{g}]]] = 0$ and not 2-step;
- **solvable** if $[\mathfrak{g}, \mathfrak{g}]$ is nilpotent.

Ex.

The following are solvable and (m -step) nilpotent:

$$sl(m+1, \mathbb{R}) \supset \left\{ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \right\} \supset \left\{ \begin{pmatrix} 0 & * \\ 0 & 0 \end{pmatrix} \right\}$$

solvable

nilpotent

Thm (Böhm-Lafente 2023)

(M, g) : homogeneous Ricci soliton with $c < 0$

⇒ (M, g) is a solvmanifold (simply-connected solvable Lie group with a left-inv Riem metric).

Thm. (Lauret 2011)

Ricci soliton

“Study on solvable RS can reduced to nilpotent RS.”

Examples - (1/4)

Ex. 1: rep of Clifford algebra \rightarrow nilpotent (H-type)

Note

For two-step nilpotent $(\mathfrak{n}, \langle , \rangle)$,

- $\mathfrak{n} = \mathfrak{v} \oplus \mathfrak{z}$, where \mathfrak{z} center, $\mathfrak{v} := \mathfrak{z}^\perp$;
- $J : \mathfrak{z} \rightarrow \text{End}(\mathfrak{v})$, by $\langle J_Z(X), Y \rangle = \langle Z, [X, Y] \rangle$.

Def. (Kaplan 1980)

$(\mathfrak{n}, \langle , \rangle)$: two-step nilpotent is of **H-type**

$$\Leftrightarrow \forall Z \in \mathfrak{z}, J_Z^2 = -\langle Z, Z \rangle \cdot \text{id}$$

$\Leftrightarrow J$ can be extended to $\tilde{J} : \text{Cl}(\mathfrak{z}, \langle , \rangle) \rightarrow \text{End}(\mathfrak{v})$.

$$\begin{matrix} \cup \\ \mathfrak{z} \end{matrix} \xrightarrow{\quad \tilde{J} \quad}$$

Ex

- $\text{Cl}_1 \cong \mathbb{C} \curvearrowright \mathbb{C}^n \rightarrow (2n+1)\text{-dim Heisenberg};$

Thm. (Boggino 1985, Lauret 2003)

- Every H-type Lie algebra is ARS.

Examples - (2/4)

Ex. 2: simple (directed) graph \rightarrow two-step nilpotent

Def. (Dani-Mainkar 2005)

For $G = (V, E)$: simple directed graph ($E \subset V \times V$),

- $\mathfrak{n}_G := \text{span}(E \cup V)$ is two-step nilpotent by $[v, w] = e$, when e is an edge from v to w .

Ex.

3-dim Heisenberg \mathfrak{h}^3 is obtained by

$$G : \begin{matrix} \bullet \\ v \end{matrix} \xrightarrow{e} \begin{matrix} \bullet \\ w \end{matrix} \rightsquigarrow \begin{matrix} \mathfrak{n}_G = \text{span} \{v, w, e\} \\ \text{with } [v, w] = e \end{matrix}$$

Thm. (Lauret-Will 2011)

For $G = (V, E)$, \mathfrak{n}_G admits ARS

$\Leftrightarrow M_G := 3I + \text{Adj}(\text{Line}_G)$ is positive

(i.e., $\exists v \in (\mathbb{R}_{>0})^n : M_G v = [1]_n$)

$$= \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix} \in \mathbb{R}^n$$

Examples - (3/4)

Ex. 3: parabolic subalgebra \rightarrow nilpotent

Fact

For a real semisimple Lie algebra \mathfrak{g} ,

- choosing a subset Φ of simple roots in the restricted root system, one has a parabolic subalgebra q_Φ ;
- q_Φ has the Langlands decomposition $q_\Phi = m_\Phi \oplus a_\Phi \oplus n_\Phi$ with n_Φ nilpotent.

Ex.

Typical ex (for $\mathfrak{sl}(n, \mathbb{R})$) is given by “block dec.”:

$$A_4 : \text{Diagram of } A_4 \text{ (a chain of 4 nodes, 3 edges, with the 2nd node shaded black)} \quad g_{\Phi} \quad n_{\Phi}$$

$$\rightsquigarrow SL(5, \mathbb{R}) \supset \left\{ \begin{pmatrix} * & * & * & * & * \\ * & * & * & * & * \\ * & * & * & * & * \\ * & * & * & * & * \\ * & * & * & * & * \end{pmatrix} \right\} \supset \left\{ \begin{pmatrix} 0 & * & * & * & * \\ 0 & 0 & * & * & * \\ 0 & 0 & 0 & * & * \\ 0 & 0 & 0 & 0 & * \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix} \right\}$$

Thm. (T. 2011)

- Every n_ϕ admits ARS.

Examples - (4/4)

Summary

- H-type: 2-step
- graph \rightarrow 2-step
- parabolic \rightarrow arbitrary high-step

Note

- nilpotent Lie algebra の分類は不可能;
- 様々な良いクラスの例が見付かると嬉しい;
- “良い対象” から構成できると嬉しい;
- 様々な構成方法を募集中

Quivers - (1/3)

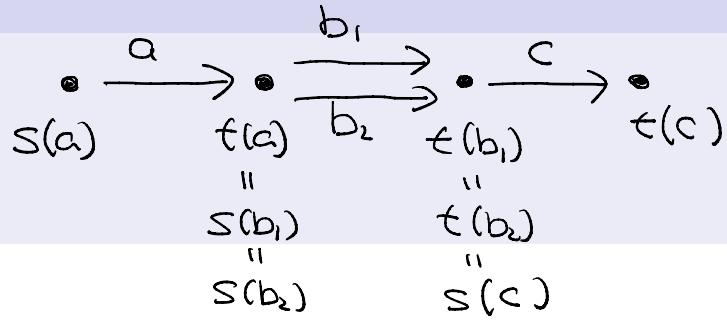
quiver (originally): a container for holding arrows

Def.

$Q = (V, E, s, t)$ is a **quiver** if

- V, E : sets (vertices and edges);
- $s, t : E \rightarrow V$: maps (source and target).

Ex.

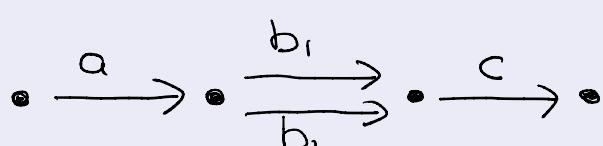


Def.

$\alpha_1 \cdots \alpha_m$ is a **path** of a quiver if

- $\alpha_i \in E$ and $t(\alpha_i) = s(\alpha_{i+1})$ for $\forall i$.

Ex.



path: a, b₁, b₂, c
ab₁, ab₂, b₁c, b₂c
ab₁c, ab₂c

Quivers - (2/3)

Def.

For a quiver Q , the **path algebra** is defined by

- Space: $\text{span}(\text{Path}(Q))$,
where $\text{Path}(Q) := \{\text{all paths in } Q\}$;
- Product: For $\alpha, \beta \in \text{Path}(Q)$, define

$$\alpha \cdot \beta := \begin{cases} \alpha\beta & (\text{if } t(\alpha) = s(\beta)), \\ 0 & (\text{others}). \end{cases}$$

Def.

For a quiver Q , define the Lie algebra \mathfrak{n}_Q by

- $\mathfrak{n}_Q := \text{span}(\text{Path}(Q))$, $[\alpha, \beta] := \alpha \cdot \beta - \beta \cdot \alpha$.

Ex.

$$\bullet \xrightarrow{a} \bullet \xrightarrow{b} \bullet \Rightarrow \mathfrak{n}_Q = \text{span} \{a, b, ab\}$$

with $[a, b] = a \cdot b - b \cdot a = ab$

$$\bullet \xrightarrow{a} \bullet \xrightarrow{\begin{matrix} b_1 \\ b_2 \end{matrix}} \bullet \xrightarrow{c} \bullet \Rightarrow \mathfrak{n}_Q : 3\text{-step nilpotent}$$

$$\bullet \xrightarrow{\quad} \bullet \Rightarrow \dim \mathfrak{n}_Q = +\infty$$

Quivers - (3/3)

Def

A path α is

- a **cycle** if $t(\alpha) = s(\alpha)$;
- **acyclic** if α does not contain a cycle.

Prop.

For a finite quiver Q without cycles,

- $\exists m = \max$ of length of paths;
- \mathfrak{n}_Q is an m -step nilpotent Lie algebra.

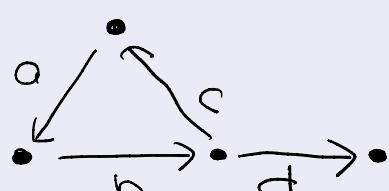
Def.

For a finite quiver Q , denote by \mathfrak{n}_Q^A the span of

- $\text{Apath}(Q) := \{\text{acyclic path in } Q\}$
- with $\underbrace{[,]}$ defined by $\alpha \cdot \beta = \alpha\beta$ if acyclic path

$$[\alpha, \beta] = \alpha \cdot \beta - \beta \cdot \alpha \quad (= 0 \text{ otherwise})$$

Ex.



$$\Rightarrow \mathfrak{n}_Q^A = \text{span} \left\{ \begin{array}{l} a, b, c \\ ab, bc, ca \\ abd \end{array} \right\}$$

with $[ab, c] = 0, \dots$

Matrices - (1/3)

Thm. (Mizoguchi-T. 2025)

Q : a finite quiver Q without cycles

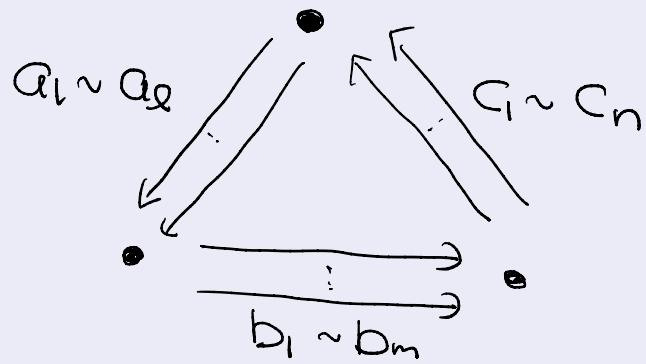
$\Rightarrow \mathfrak{n}_Q$ always admits algebraic Ricci soliton.

Note

This is not true for \mathfrak{n}_Q^A .

Prop. (Kitayama)

Consider \mathfrak{n}_Q^A for the following Q :



Then

- \exists ARS $\Leftrightarrow l + m - n, m + n - l, n + l - m \geq 0$;
- when $l = 1$, \exists ARS $\Leftrightarrow |m - n| \leq 1$.

Matrices - (2/3)

Note

We give a condition for \mathfrak{n}_Q^A to admit ARS by **matrices**.

Setting

For the Lie algebra \mathfrak{n}_Q^A ,

- $W_Q := \{\{\alpha, \beta\} \mid [\alpha, \beta] \neq 0\} \subset \text{Apath}(Q)^2$;
- Write $W_Q = \{w_1, \dots, w_m\}$;
- For $w_j = \{\alpha, \beta\}$,
define $\bar{w}_j \in \text{Apath}(Q)$ by $\bar{w}_j = \pm[\alpha, \beta]$;

Ex.

$$w_1 = \{a, b\}, \bar{w}_1 = ab$$

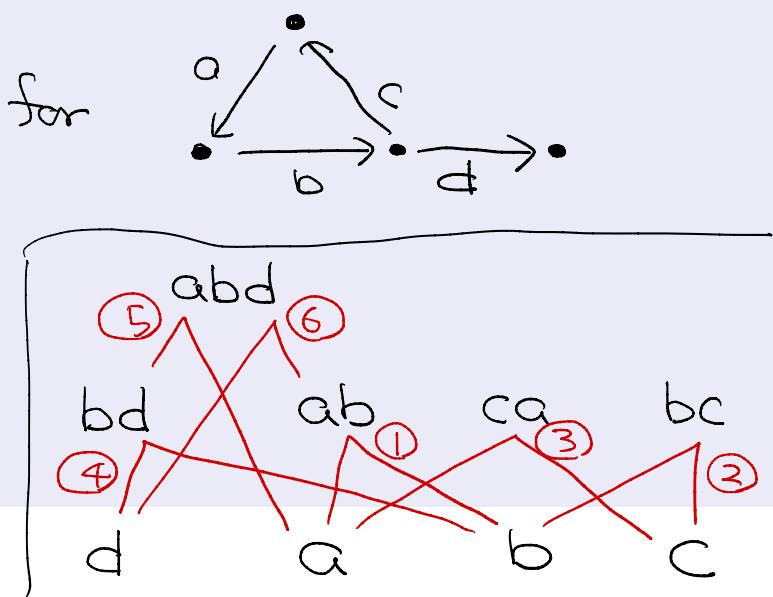
$$w_2 = \{b, c\}, \bar{w}_2 = bc$$

$$w_3 = \{c, a\}, \bar{w}_3 = ca$$

$$w_4 = \{b, d\}, \bar{w}_4 = bd$$

$$w_5 = \{a, bd\}, \bar{w}_5 = abd$$

$$w_6 = \{ab, d\}, \bar{w}_6 = abd$$



Matrices - (3/3)

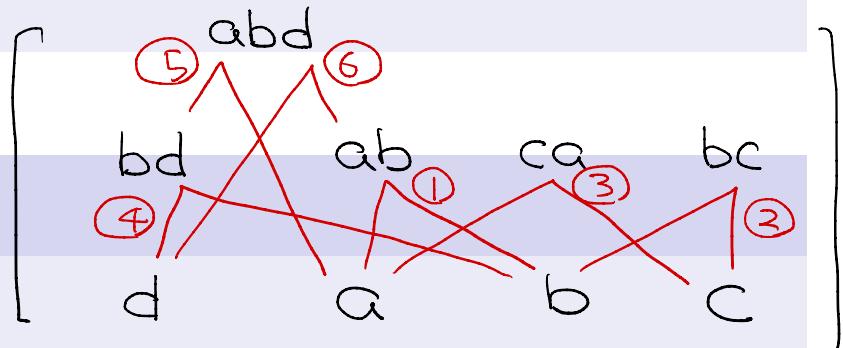
Def.

Define $M_Q = (x_{ij}) \in M_m(\mathbb{Z})$ by

$$x_{ij} := \begin{cases} 3 & \text{if } i = j \\ 1 & \text{if } \#(w_i \cap w_j) = 1 \\ 1 & \text{if } \overline{w}_i = \overline{w}_j \\ -1 & \text{if } \overline{w}_i \in w_j \text{ or } \overline{w}_j \in w_i \\ 0 & \text{otherwise} \end{cases}$$

Ex

For the above Q ,



$$M_Q = \begin{pmatrix} 3 & 1 & 1 & 1 & 1 & -1 \\ 1 & 3 & 1 & 1 & 0 & 0 \\ 1 & 1 & 3 & 0 & 1 & 0 \\ 1 & 1 & 0 & 3 & -1 & 1 \\ 1 & 0 & 1 & -1 & 3 & 1 \\ -1 & 0 & 0 & 1 & 1 & 3 \end{pmatrix}$$

Question

Any better explanation for this construction?

Condition - (1/2)

Thm (Kitayama)

\mathfrak{n}_Q^A admits ARS

$\Leftrightarrow M_Q$ is “positive”

i.e., $\exists \nu \in (\mathbb{R}_{>0})^m : M_Q \nu = [1]_m$

Key Notion

Def (Nikolayevsky 2011)

\mathfrak{n} nilpotent, $\{X_1, \dots, X_n\}$ its basis, C_{ij}^k structure const.

This basis is **nice**

$\Leftrightarrow \forall i, j, \#\{k \mid C_{ij}^k \neq 0\} \leq 1;$

$\forall i, k, \#\{j \mid C_{ij}^k \neq 0\} \leq 1.$

The proof of our thm uses

Thm (Nikolayevsky 2011)

\mathfrak{n} nilpotent with nice basis $\{X_1, \dots, X_n\}$.

Then \mathfrak{n} admits ARS

\Leftrightarrow 構造定数から作った行列が positive;

\Leftrightarrow 構造定数から作った $F \subset \mathbb{R}^n$ (有限) に対し,
0 の $\text{aff}(F)$ への射影が $\text{Conv}(F)$ の内点

Condition - (2/2)

Thm (Nikolayevsky 2011)

Let $\mu \in \mathcal{V} := \wedge^2(\mathbb{R}^n)^* \otimes \mathbb{R}^n$.

Then the Lie algebra (\mathbb{R}^n, μ) admits ARS

\Leftrightarrow the orbit $G_\phi \cdot \mu \subset \mathcal{V}$ is closed.

↓ The closedness is controlled by $\text{Conv}(F)$

Recall (Nikolayevsky 2011)

\mathfrak{n} (nilpotent with nice basis) admits ARS

\Leftrightarrow 構造定数から作った行列が positive;

\Leftrightarrow 構造定数から作った $F \subset \mathbb{R}^n$ (有限) の条件.

A black U-shaped symbol, likely a logo or a specific character, positioned at the bottom center of the page.

Note (Y. Hashimoto, 2025+)

\exists a criterion for nilpotent \mathfrak{n} without nice basis.

↑ Hilbert-Mumford criterion, GIT, ...

Thm (Y. Hashimoto, 2025+)

\mathfrak{n} nilpotent, $Y := \{\langle , \rangle \text{ on } \mathfrak{n} \text{ with some condition}\}.$

Then \mathfrak{n} admits ARS

\Leftrightarrow “Kempf-Ness” $E_\mu : Y \rightarrow \mathbb{R}$ has a critical pt.

References

Ref.

- C. Böhm, R.A. Lafuente, “Non-compact Einstein manifolds with symmetry”, J. Amer. Math. Soc. (2023)
- S.G. Dani, M. Mainkar, “Anosov automorphisms on compact nilmanifolds associated with graphs”, Trans. Amer. Math. Soc. (2005)
- Y. Hashimoto, “A Hilbert-Mumford criterion for nilsolitons”, Trans. Amer. Math. Soc., to appear
- J. Lauret, “Ricci soliton solvmanifolds”, J. Reine Angew. Math. (2011)
- J. Lauret, C. Will, “Einstein solvmanifolds: existence and non-existence questions”, Math. Ann. (2011)
- F. Mizoguchi, H. Tamaru, “Nilpotent Lie algebras obtained by quivers and Ricci solitons”, Adv. Math. (2025)
- Y. Nikolayevsky, “Einstein solvmanifolds and the pre-Einstein derivation”, Trans. Amer. Math. Soc. (2011)
- H. Tamaru; “Parabolic subgroups of semisimple Lie groups and Einstein solvmanifolds”, Math. Ann. (2011)

Thank you very much!