

My Research on "Anisotropy" will be helpful in the following fields

Physics	
Chemistry	
Geophysics and geology	
Materials science and engineering	
Computer graphics	HILL
Real-world imagery	E Carter -
Atmospheric radiative transfer	Real-world imagery
Neuroscience	Neur werne initiger y
Medical acoustics	
Micro fabrication	

Asymptotic behavior of least energy solutions to the Finsler Lane-Emden problem with large exponents

Finsler Lane-Emden problem		
(E_p)	$\begin{cases} -Q_N u = u^p \\ u > 0 \\ u = 0 \end{cases}$	in Ω , in Ω , on $\partial \Omega$,

1 is any positive number and Q_N is the Finsler N-Laplace operator where p >defined by

Finsler N-Laplacian

 $Q_N u(x) = \operatorname{div} \left(H(\nabla u(x))^{N-1} \left(\nabla_{\xi} H \right) \left(\nabla u(x) \right) \right)$ where $H = H(\xi)$ is any norm on \mathbb{R}^N (Finsler norm).

Applications of *p***-harmonic transplantation for** functional inequalities involving a Finsler norm

A transformation between symmetric functions:

Let u = u(x) be a radially symmetric function on \mathbb{R}^N , i.e., there exists a function U defined on $[0, +\infty)$ s.t. u(x) = U(|x|). Also let v = v(y) be a Finsler radially symmetric function on \mathcal{W}_R of the form $v(y) = V(H^0(y))$ for some V = V(s), $s \in [0, R)$, where R > 0 be any number. Fix 1 and assume that u and v arerelated with each other by the transformation

$$\begin{split} r &= |x|, \quad x \in \mathbb{R}^N, \\ s &= H^0(y), \quad y \in \mathcal{W}_R \subset \mathbb{R}^N, \\ r^{\frac{p-N}{p-1}} &= s^{\frac{p-N}{p-1}} - R^{\frac{p-N}{p-1}}, \\ u(x) &= U(r) = V(s) = v(y). \end{split}$$

This kind of transformation (*p*-harmonic transplantation) originates from J. Hersh (1969).

Anisotropy Sadaf Habibi,D3 Supervisor:Prof. F. Takahashi Mathematics Department, Faculty of Science, Osaka City University

Finsler norm

Let $H : \mathbb{R}^N \to \mathbb{R}$ be a nonnegative, convex function of class $C^2(\mathbb{R}^N \setminus \{0\})$, which satisfies

> $H(\xi) \ge 0, H(\xi) = 0 \iff \xi$ $H(t\xi) = |t| H(\xi), \quad \forall \xi \in \mathbb{R}^N$ $H(\xi + \eta) \le H(\xi) + H(\eta).$

H is called a Finsler norm.

The polar function of H is the function $H^0 : \mathbb{R}^N \to \mathbb{R}$ defined by

$$H^0(x) = \sup_{\xi \in \mathbb{R}^N \setminus \{0\}} rac{\xi \cdot x}{H(\xi)} \qquad x$$

 H^0 is also a norm on \mathbb{R}^N .

Our aim is to extend the results of Ren and Wei (1994, 1995, 1996) to the anisotropic problem (E_p) .

Our first result is the following L^{∞} -bound of least energy solutions. Theorem 1 (DCDS, 42, no.10, (2022), pp.5063–5086)

Let u_p be a least energy solution to (E_p) . Then there exist C_1, C_2 (independent of p), such that

 $0 < C_1 \leq ||u_p||_{L^{\infty}(\Omega)} \leq C_2 < \infty$ for p large enough. Furthermore, we have

$$\lim_{p \to \infty} p^{N-1} \int_{\Omega} H(\nabla u_p)^N dx = \lim_{p \to \infty} p^{N-1} \int_{\Omega} u_p^{p+1} dx = \left(\frac{Ne\beta_N}{N-1}\right)^{N-1}$$

$$W = N(N\kappa_N)^{\frac{1}{N-1}}, \ \kappa_N = |\mathcal{W}| \text{ is the volume of the unit Wulff ball } \mathcal{W} = 1$$

where β_N $\{x \in \mathbb{R}^N : H^0(x) < 1\}.$

From \mathbb{R}^N to \mathcal{W}_R

If we have some functional inequalities for radially symmetric functions on \mathbb{R}^N , then we have new inequalities with a Finsler norm for Finsler symmetric functions on \mathcal{W}_R . (Proposition 1).

From B_R to \mathbb{R}^N

If we have some functional inequalities for radially symmetric functions on B_R , then we have new inequalities with a Finsler norm for Finsler symmetric functions on \mathbb{R}^N . (Proposition 2).

$$\xi = 0$$

 $\forall, \forall t \in \mathbb{R}$

 $\in \mathbb{R}^{N}$.

On the asymptotic behavior of the L^{∞} -norm of u_p , we have

Let u_p be a least energy solution to (E_p) . Then it holds that

 $1 \le \limsup_{p \to \infty} \|u_p\|_{L^{\infty}(\Omega)} \le e^{\frac{N-1}{N}}.$

The estimate from above is <u>new</u> even for the case $Q_N = \Delta_N$.

Least energy solution u_p must satisfy

 $\limsup_{p \to \infty}$

This conjecture is known to be true when N = 2 and $H(\xi) = |\xi|$.

Theorem 1 (The sharp L^p -Sobolev inequality on \mathcal{W}_R)

function $v \in W_0^{1,p}(\mathcal{W}_R)$, the inequality

$$\begin{split} \tilde{S}_{N,p} \left(& \int_{\mathcal{W}_R} \frac{|v(y)|^{p^*}}{\left(1 - \left(\frac{H^0(y)}{R}\right)^{\frac{N-p}{p-1}}\right)^{\frac{p(N-1)}{N-p}}} dy \right)^{p/p^*} \leq & \int_{\mathcal{W}_R} H(\nabla v(y))^p dy \end{split}$$
ere
$$\tilde{S}_{N,p} = S_{N,p} \left(\frac{\omega_{N-1}}{N\kappa_N}\right)^{p/p^*-1}. \end{split}$$

holds true. He

$$egin{aligned} & rac{|v(y)|^{p^*}}{(rac{H^0(y)}{R})^{rac{N-p}{p-1}}}^{p(N-1)}dy \end{aligned} \ & \leq \int_{\mathcal{W}_R} H(
abla v(y))^p dy \ & ilde{S}_{N,p} = S_{N,p} \left(rac{\omega_{N-1}}{N\kappa_N}
ight)^{p/p^*-1}. \end{aligned}$$

The equality holds iff $v(y) = V(H^0(y))$, where

$$V(H^0(y)) = \Big(a +$$

for some a, b > 0.

Theorem 2 (ibid.)

Conjecture

$$\|u_p\|_{L^{\infty}(\Omega)} = e^{\frac{N-1}{N}}.$$

Let $N \ge 2$, $1 and <math>p^* = \frac{Np}{N-p}$. Then for any Finsler radially symmetric

 $+ b \left((H^0(y))^{\frac{p-N}{p-1}} - R^{\frac{p-N}{p-1}} \right)^{\frac{p}{p-N}} \right)^{\frac{p-N}{p}}$