論文

A component of the septation initiation network complex, SepL, participates in the cellobiose-responsive expression of cellulolytic enzyme genes in Aspergillus aculeatus
Sawada K, Kikuya S, Shiga Y, Kawaguchi T, Tani S*.
Journal of Basic and Microbiology. 2024 Dec;1:e2400266. doi: 10.1002/jobm.202400266. Online ahead of print.

The combinational manipulation of transcription factors, CreA and ClbR, is a viable strategy to improve cellulolytic enzyme production in Aspergillus aculeatus
Tani S*, Hirose S, Kawaguchi T.
Journal of Biotechnology and Bioengineering. 2024 Nov;138(5):361-368. https://doi.org/10.1016/j.jbiosc.2024.07.011

Cycloheximide in the nanomolar range inhibits seed germination of Orobanche minor.
Nogami R, Nagata M, Imada R, Kai K, Kawaguchi T, Tani S.*
Journal of Pesticide Science. 2024 Feb 20;49(1):22-30. https://doi.org/10.1584/jpestics/49/1/49_D23-038/_article.

Independent, cooperative regulation of cellulolytic genes by paralogous transcription factors ClbR and ClbR2 in Aspergillus aculeatus.
Kunitake E, Kawaguchi T, Tani S.*
Bioscience, Biotechnology, and Biochemistry. 2024 Jan 24;88(2):212-219. https://doi.org/10.1093/bbb/zbad156.

C-terminus of serine-arginine protein kinase-like protein, SrpkF, is involved in conidiophore formation and hyphal growth under salt stress in Aspergillus aculeatus.
Kobayashi N, Katayama R, Minamoto K, Kawaguchi T, Tani S.*
Int Microbiol. 2024 Feb;27(1):91-100. https://doi.org/10.1007/s10123-023-00373-x.

A new function of a putative UDP-glucose 4-epimerase on the expression of glycoside hydrolase genes in Aspergillus aculeatus.
Kuga M, Shiroyanagi H, Kawaguchi T, Tani S.*
Appl Microbiol Biotechnol. 2023 Feb;107(2-3):785-795. https://doi.org/10.1007/s00253-022-12337-8.

Improvement of cellulosic biomass-degrading enzyme production by reducing extracellular protease production in Aspergillus aculeatus.
Yoshimura Y, Kobayashi Y, Kawaguchi T, Tani S.*
J Gen Appl Microbiol. 2022 Nov 10;68(3):143-150. https://doi.org/10.2323/jgam.2021.10.005.

Serine-arginine protein kinase-like protein, SrpkF, stimulates both cellobiose-responsive and D-xylose-responsive signaling pathways in Aspergillus aculeatus.
Katayama R, Kobayashi N, Kawaguchi T, Tani S.*
Curr Genet. 2022 Feb;68(1):143-152. https://doi.org/10.1007/s00294-021-01207-x

Biogenic manganese oxides combined with 1-hydroxybenzotriazol and an Mn(II)-oxidizing enzyme from Pleosporalessp. Mn1 oxidize 3,4-dimethoxytoluene to yield 3,4-dimethoxybenzaldehyde.
Yoshimura Y,§ Tani S,§ Fujiwara M, Nakamura M, Sumitani J, Kawaguchi T.*
J Biosci Bioeng. 2021 Jan 23:S1389-1723(20)30464-3. https://doi.org/10.1016/j.jbiosc.2020.12.014
§ These two authors contributed equally to this work.

A component of the septation initiation network complex, AaSepM, is involved in multiple cellulose-responsive signaling pathways in Aspergillus aculeatus.
Tsumura R, Sawada K, Kunitake E, Sumitani J, Kawaguchi T, Tani S.*
Appl Microbiol Biotechnol. 2021 Feb;105(4):1535-1546. https://doi.org/10.1007/s00253-021-11110-7

Chemical genetic approach using β-rubromycin reveals that a RIO kinase-like protein is involved in morphological development in Phytophthora infestans.
Tani S,* Nishio N, Kai K, Hagiwara D, Ogata Y, Tojo M, Sumitani J, Judelson HS, Kawaguchi T.
Sci Rep. 2020 Dec 18;10(1):22326. https://doi.org/10.1038/s41598-020-79326-7.

Actinomycins inhibit the production of the siderophore pyoverdines in the plant pathogen Pseudomonas cichoriiSPC9018.
Maenaka R, Tani S, Hikichi Y, Kai K.*
Biosci Biotechnol Biochem. 2020 Oct;84(10):1975-1985. https://doi.org/10.1080/09168451.2020.1785839.

A Unique Combination of Two Different Quorum Sensing Systems in the β-Rhizobium Cupriavidus taiwanensis.
Wakimoto T, Nakagishi S, Matsukawa N, Tani S, Kai K.*
J Nat Prod. 2020 Jun 26;83(6):1876-1884. doi: 10.1021/acs.jnatprod.0c00054. Epub 2020 Jun 2.PMID: 32484353

Engineering of the Trichoderma reesei xylanase3 promoter for efficient enzyme expression.
Hirasawa H, Shioya K, Furukawa T, Tani S, Sumitani J, Kawaguchi T, Morikawa Y, Shida Y, Ogasawara W.*
Appl Microbiol Biotechnol. 2018 Feb 7. doi: 10.1007/s00253-018-8763-5.

Dipeptidyl peptidase IV is involved in the cellulose-responsive induction of cellulose biomass-degradingenzyme genes in Aspergillus aculeatus.
Tani S,* Yuki S, Kunitake E, Sumitani J, Kawaguchi T.
Biosci Biotechnol Biochem. 2017 Mar 14:1-8. doi: 10.1080/09168451.2017.1295800.

Site-saturation mutagenesis for β-glucosidase 1 from Aspergillus aculeatus to accelerate the saccharification of alkaline-pretreated bagasse.
Baba Y, Sumitani J,* Tanaka K, Tani S, Kawaguchi T.
Appl Microbiol Biotechnol. 2016 Dec;100(24):10495-10507.

Cytotoxicity and colloidal behavior of polystyrene latex nanoparticles toward filamentous fungi in isotonic solutions.
Nomura T,* Tani S, Yamamoto M, Nakagawa T, Toyoda S, Fujisawa E, Yasui A, Konishi Y.
Chemosphere. 2016 Apr;149:84-90. Epub 2016 Feb 5.

A high performance Trichoderma reesei strain that reveals the importance of xylanase III in cellulosic biomass conversion.
Nakazawa H, Kawai T, Ida N, Shida Y, Shioya K, Kobayashi Y, Okada H, Tani S, Sumitani J, Kawaguchi T, Morikawa Y, Ogasawara W.*
Enzyme Microb Technol. 2016 Jan;82:89-95. Epub 2015 Sep 2.

Characterization of Aspergillus aculeatus β-glucosidase 1 accelerating cellulose hydrolysis with Trichoderma cellulase system.
Baba Y, Sumitani J,* Tani S, Kawaguchi T.
AMB Express. 2015 Jan 24;5(1):3. eCollection 2015 Dec.

Characterization and gene cloning of a maltotriose-forming exo-amylase from Kitasatospora sp. MK-1785.
Kamon M, Sumitani J,* Tani S, Kawaguchi T.
Appl Microbiol Biotechnol. 2015 Jun;99(11):4743-53. Epub 2015 Jan 27.

Palmitate induces insulin resistance in human HepG2 hepatocytes by enhancing ubiquitination and proteasomal degradation of key insulin signaling molecules.
Ishii M, Maeda A, Tani S, Akagawa M.*
Arch Biochem Biophys. 2015 Jan 15;566:26-35. Epub 2014 Dec 16.

Effects of clbR overexpression on enzyme production in Aspergillus aculeatus vary depending on the cellulosic biomass-degrading enzyme species.
Kunitake E, Kawamura A, Tani S,* Takenaka S, Ogasawara W, Sumitani J, Kawaguchi T.
Biosci Biotechnol Biochem. 2015;79(3):488-95. Epub 2014 Nov 20.

Complex regulation of hydrolytic enzyme genes for cellulosic biomass degradation in filamentous fungi.
Tani S,* Kawaguchi T, Kobayashi T.
Appl Microbiol Biotechnol. 2014 Jun;98(11):4829-37. Epub 2014 Apr 11. Review.

Cristal structures of glycoside hydrolase family 3 β-glucosidase 1 from Aspergillus aculeatus.
Suzuki K, Sumitani J, Nishimaki T, Tani S, Wakagi T, Kawaguchi T, Fushinobu S.*
Biochemical Journal. 2013 Jun 1; 452(2):211-221. (Epub 2013 March 28).

Reversible impairment of the ku80 gene by a recyclable marker in Aspergillus aculeatus.
Tani S, Tsuji A, Kunitake E, Sumitani J, Kawaguchi T.*
AMB Express. 2013 Jan 12;3(1):4.

Analysis of the saccharification capability of high-functional cellulase JN11 for various pretreated biomass through a comparison with cammercially available couterparts.
Kawai T, Nakazawa H, Ida N, Okada H, Tani S, Sumitani J, Kawaguchi T, Ogasawara W, Morikawa Y, Kobayashi Y.*
Journal of Industrial Microbiology and biotechnology. 2012 Dec;39(12):1741-1749. (Epub 2012 Sep 29)

A novel transcriptional regulator, ClbR, controls the cellobiose- and cellulose-responsive induction of cellulase and xylanase genes regulated by two distinct signaling pathways in Aspergillus aculeatus.
Kunitake E, Tani S,* Sumitani J, Kawaguchi T.
Applied Microbiology and Biotechnology. 2013 Mar;97(5):2017-2018. (Epub 2012 Aug 1)

XlnR-independent signaling pathway regulates both cellulase and xylanase genes in response to cellobiose in Aspergillus aculeatus.
Tani S, Kanamasa S, Sumitani J, Arai M, Kawaguchi T.*
Current Genetics. 2012 Apr;58(2):93-104. (Epub 2012 Feb 28)

Agrobacterium tumefaciens-mediated transformation of Aspergillus aculeatus for insertional mutagenesis.
Kunitake E, Tani S,* Sumitani J, Kawaguchi T.
AMB Express. 2011 Dec;14(1):46.

Construction of a recombinant Trichoderma reesei strain expressing Aspergillus aculeatus β-glucosidase 1 for efficient biomass conversion.
Nakazawa H, Kawai T, Ida N, Shida Y, Kobayashi Y, Okada H, Tani S, Sumitani J, Kawaguchi T, Morikawa Y, Ogasawara W.*
Biotechnology and Bioengineering. 2012 Jan;109(1):92-99. (Epub 2011 Sep 2)

Metabolic adaptation of Phytophthora infestans during growth on leaves, tubers, and artificial media.
Judelson HS,* Tani S, Narayan RD.
Molecular Plant Pathology. 2009 Nov;10(6):843-855.

Development of a homologous transformation system for Aspergillus aculeatus based on the sC gene encoding ATP-sulfurylase.
Adachi H, Tani S,* Kanamasa S, Sumitani J Kawaguchi T.
Bioscience, Biotechnolgy, and Biochemistry. 2009 May;73(5):1197-1199. (Epub 2009 May 7)

Inducer-dependent nuclear localization of a Zn(II)2Cys6 transcriptional activator, AmyR, in Aspergillus nidulans.
Makita T, Katsuyama Y, Tani S, Suzuki H, Kato N, Todd RB, Hynes MJ, Tsukagoshi N, Kato M, Kobayashi T*.
Bioscience, Biotechnolgy, and Biochemistry. 2009 Feb;73(2):391-399. (Epub 2009 Feb 7)

Trasgene-induced silencing of the zoosporogenesis-specific PiNIFC gene cluster of Phytophthora infestans involves chromatin alterations.
Judelson HS* and Tani S.
Eukaryotic Cell. 2007 Jul;6(7):1200-1209. (Epub 2007 May 4)

Performance of a tetracycline-responsive transactivator system for regulating transgenes in the oomycete Phytophthra infeatans.
Judelson HS,* Narayan RD, Ah-Fong AMV, Tani S, and Kim KS.
Current Genetics. 2007 May;51(5):297-307. (Epub 2007 Mar 22)

Activation of Zoosporogenesis-specific genes in Phytophthora infestans involves a 7-nucleotide promoter motif and cold-induced membrane rigidity.
Tani S and Judelson HS.*
Eukaryotic Cell. 2006 Apr;5(4):745-752.

A cluster of NIF transcriptional regulators with divergent patterns of spore-specific expression in Phytophthora infestans.
Tani S, Kim KS, and Judelson HS.*
Fungal Genetics and Biology. 2005 Jan;42(1):42-50.

Mode of AmyR binding to the CGGN8AGG sequence in the Aspergillus oryzae taaG2 promoter.
Itho T, Tani S, Itoh T, Tsukagoshi N, Kato M, and Kobayashi T.*
Bioscience, Biotechnology, and Biochemistry. 2004 Sep;68(9):1906-1911.

Multiple pathways regulate the induction of genes during zoosporogenesis in Phytophthora infestans.
Tani S, Yatzkan E, and Judelson HS.*
Molecular Plant-Microbe interaction. 2004 Mar;17(3):330-337.

in vivo and in vitro analyses of the AmyR binding site of the Aspergillus nidulans agdA promoter, requirement of the CGG direct repeat for induction and high affinity binding of AmyR.
Tani S, Itoh T, Kato M, Kobayashi T,* and Tsukagoshi N.
Bioscience, Biotechnology, and Biochemistry. 2001, 65, 1568-1574

Characterization of the amyR gene encoding a transcriptional activator for the amylase genes in Aspergillus nidulans.
Tani S, Katsuyama Y, Hayashi T, Suzuki H, Kato M, Gomi K, Kobayashi T,* Tsukagoshi N.
Current Genetics. 2001, 39, 10-15

A novel nuclear factor, SREB, binds to a cis-acting element, SRE, required for inducible expression of the Aspergillus oryzae Taka-amylase A gene in A. nidulans.
Tani S, Kawaguchi T, Kato M, Kobayashi T,* Tsukagoshi N.
Molecular and General Genetics. 2000, 263, 232-238

Purification and characterization of β-1.3-Xylanase from a marine bacterium, Vibrio sp. XY-214.
Araki T,* Tani S, Maeda K, Hashikawa S, Nakagawa H, Morishita T.
Bioscience, Biotechnology, and Biochemistry. 1999, 63, 2017-201