微分幾何学セミナー(2024年度)
大阪公立大学数学研究所(OCAMI) での事業の一環として、 (幾何解析、トポロジー、代数幾何、数理物理、可積分系、情報数理などにも関わる広い意味の)微分幾何学のセミナーを推進します。
微分幾何学セミナー(2024年度)講演一覧
日時 | 2024年12月16日(月)16:45-18:15 |
---|---|
講演者(所属) |
稲場 道明(奈良女子大学) |
タイトル | TBA |
場所 | 理学部E棟4階 大講究室(E408) |
アブストラクト | TBA |
日時 | 2024年12月6日(金)16:45-18:15 |
---|---|
講演者(所属) |
新田 泰文(東京理科大学) |
タイトル | TBA |
場所 | TBS |
アブストラクト | TBA |
日時 | 2024年9月9日(月)16:45-18:15 |
---|---|
講演者(所属) |
Wolfram Bauer(Leibniz Universität Hannover) |
タイトル | Subriemannian geometry and spectral analysis |
場所 | 理学部F棟4階 中講究室(F415) |
アブストラクト | A regular subriemannian manifold M carries a geometric hypoelliptic operator, the intrinsic sublaplacian. Due to a degeneracy of its symbol, geometric and analytic e ects can be observed in the study of this operator, which have no counterpart in Riemannian geometry. During the last decades inverse spectral problems in subriemannian geometry have been studied by various authors. Typical approaches are based on the analysis of the induced subriemannian heat or wave equation. In this talk we survey some results in subriemannian geometry. In particular, we address the spectral theory of the sublaplacian in the case of certain compact nilmanifolds or, more generally, for H-type foliations. This talk is based on joint work with K. Furutani, C. Iwasaki, A. Laaroussi, I. Markina and S. Vega-Molino. |
日時 | 2024年7月19日(金)16:45-18:15 |
---|---|
講演者(所属) |
Wafaa Batat (Ecole Nationale Polytechnique d'Oran Maurice Audin) |
タイトル | Homogeneous Structures on Three- and Four-dimensional Lie groups |
場所 | 理学部F棟4階 小講究室B(F405) |
アブストラクト | In this talk, we will introduce the notion of homogeneous pseudo-Riemannian structures and demonstrate how to establish homogeneity and natural reductiveness of 3- and 4-dimensional Lie groups through a tensor satisfying certain geometric partial differential equations involving the metric and the curvature of a given manifold. These equations are known as Ambrose-Singer equations. We will begin by examining homogeneous structures on three-dimensional unimodular and non-unimodular Lie groups, proving the existence of homogeneous Lorentzian structures that differ from the canonical ones without being naturally reductive, a phenomenon with no Riemannian counterpart. Using these homogeneous structures, we will show how to classify naturally reductive 3-dimensional Lorentzian manifolds. Our focus will then shift to the geometric properties of four-dimensional nilpotent Lie groups endowed with a family of non-flat left-invariant Lorentzian metrics. We will conduct a comprehensive classification of homogeneous structures for each metric and meticulously examine the distinctive properties characterizing each structure. Additionally, we will provide a specific example demonstrating the presence of a naturally reductive, non-flat, left-invariant Lorentzian metric on the 2-nilpotent Lie group, where the center exhibits degeneracy. Furthermore, we will establish the existence of a non-canonical homogeneous structure. As an application, we will demonstrate the existence of naturally reductive left-invariant Lorentzian metrics on the four-dimensional 3-nilpotent Lie group. |
日時 | 2024年7月5日(金)16:45-18:15 |
---|---|
講演者(所属) |
Christopher Mahadeo (University of Illinois at Chicago) |
タイトル | Topological recursion and twisted Higgs bundles |
場所 | 理学部F棟4階 小講究室B(F405) |
アブストラクト | Prior works relating meromorphic Higgs bundles to topological recursion have considered non-singular models that allow the recursion to be carried out on a smooth Riemann surface. I will discuss some recent work where we define a "twisted topological recursion" on the spectral curve of a twisted Higgs bundle, and show that the g=0 components of the recursion compute the Taylor expansion of the period matrix of the spectral curve, mirroring a result of for ordinary Higgs bundles and topological recursion. I will also discuss some current work relating topological recursion to a new viewpoint of quantization of Higgs bundles. |
日時 | 2024年5月24日(金)16:45-18:15 |
---|---|
講演者(所属) |
浅尾 泰彦(福岡大学) |
タイトル | 距離空間のホモロジー |
場所 | 第9講義室(杉本キャンパス理学部E棟1階,E101) |
アブストラクト | 群のホモロジーは純代数的にも定義されるし、その分類空間と呼ばれる位相空間の特異ホモロジーとしても定義できる。群は対象が1つしかない小圏だと思うことができ、群ホモロジーは小圏のホモロジーに一般化される。これは単体複体のホモロジーなど様々なホモロジーを含む広い概念である。ここで小圏とは対象a, bに対してHom(a,b)が集合であるような圏のことを言う。つまりHom(a,b)が圏Setの対象なわけであるが、それではSet以外の圏でも話は進むであろうか。正実数全体をある見方で圏だと思うと、Homが実数の圏とは距離空間のことであり、上の話は距離構造のホモロジーを考えることに翻訳される。距離から誘導される位相のホモロジーではなく距離構造そのもののホモロジーであるが、群の場合同様代数的にも定義されるし、分類空間と呼ばれる位相空間のホモロジーでもあり、この位相は距離から誘導されるものとは違う。このようにして距離構造をトポロジー的に調べる「マグニチュード理論」について講演者の最近の結果を交えながらお話ししたい。 |
微分幾何学セミナー(2024年度)主催者
連絡先 | Tel | |
---|---|---|
田丸 博士 | 06-6605-2615 | tamaru [at] omu.ac.jp |
石田 裕昭 | hiroaki.ishida [at] omu.ac.jp | |
加藤 信 | 06-6605-2616 | shinkato [at] omu.ac.jp |
小池 貴之 | tkoike [at] omu.ac.jp | |
田中 潮 | utanaka [at] omu.ac.jp | |
橋本 義規 | yhashimoto [at] omu.ac.jp | |
橋本 要 | h-kaname [at] sci.osaka-cu.ac.jp |