微分幾何学セミナー(2008年度)
大阪市立大学数学研究所(OCAMI) での事業の一環として、(幾何解析、トポロジー、代数幾何、数理物理、可積分系、情報数理などにも関わる広い意味の)微分幾何学のセミナーを推進します。
連絡先 | 大仁田 義裕 加藤 信 〒558-8585 大阪府大阪市住吉区杉本3丁目3番138号 大阪市立大学 大学院理学研究科 数物系専攻 |
---|---|
TEL | 06-6605-2617(大仁田) 06-6605-2616(加藤) |
ohnita@sci.osaka-cu.ac.jp shinkato@sci.osaka-cu.ac.jp |
日時 | 3月18日(水) 14:40~16:10 |
---|---|
講演者(所属) | 河井 公大朗(東京大学大学院数理科学研究科 M2) |
タイトル | Torus invariant Special Lagrangian Submanifolds in the Canonical Bundle of Toric Fano Manifolds |
場所 | 数学講究室(3040) |
アブストラクト | トーリック・ファノ多様体の標準束のトーラス不変特殊ラグランジュ部分多様体の構成について述べる。特殊ラグランジュ部分多様体は極小部分多様体の一種で、カラビ・ヤウ多様体上に定義される。標準束がカラビ・ヤウ構造を 持つことを、二木昭人氏によるリッチ平坦計量を用いて示す。そしてIonel, Min-Oo 両氏による運動量写像の手法により、特殊ラグランジュ部分多様体を構成する。 |
日時 | 3月18日(水) 13:00~14:00 |
---|---|
講演者(所属) | Jost Hetrich Eschenburg(University of Augsburg, Germany) |
タイトル | タイリング(Tiling)に関する幾何学特別講義 “Penrose Tiling and its Generalization” |
場所 | 数学講究室(3040) |
アブストラクト | I shall offer an extra talk for young students, not on differential geometry but still on geometry: I have studied quite intensively the Penrose tiling, a periodic pattern obeying very strong rules. I shall tell this in a completely elementary way or in a more advanced way (or a mixture of both). I shall make a few observations which are not so common. I think that such regular patterns could be of some interest in the land of origami (though there is no direct relationship). |
日時 | 3月12日(木) 17:30~19:00 |
---|---|
講演者(所属) | 川上 裕(九州大学大学院数理学研究院&大阪市立大学数学研究所) |
タイトル | 平坦エンドをもつ極小曲面の非存在性について |
場所 | 数学講究室(3040) |
アブストラクト | 極小曲面のエンドの解析に関しては幾つか結果が知られており,特に平坦エンドについては代数的なアプローチが可能となります. 今回の講演では,Kusner-Schmitt両氏によるスピンを用いた平坦エンドの代数的特徴付けとその 応用についてお話したいと考えております. |
日時 | 3月11日(水) 14:40~16:10 |
---|---|
講演者(所属) | 安井 幸則(大阪市立大学) |
タイトル | コンフォーマルKilling-矢野テンソルを持つEinstein多様体 |
場所 | 数学講究室(3040) |
アブストラクト | コンフォーマルKilling-矢野(CKY)テンソルが存在するEinstein多様体についてお話します. 具体例としてはブラックホール時空を念頭に置いています. 2階の閉CKYテンソルが存在するときどのような計量の形が許されるのかを完全に 分類します.また,このような時空をコンパクト化することにより, Kaehler多様体上の球面束にEinstein計量が誘導できることを示します. |
日時 | 3月11日(水) 10:40~12:10 |
---|---|
講演者(所属) | 柏田 豊子 |
タイトル | 共形キリングテンソル及びその周辺 ---添字付きテンソル解析を主道具として |
場所 | 数学講究室(3040) |
アブストラクト | pdf file |
日時 | 2月6日(木) 10:40~12:10 |
---|---|
講演者(所属) | 黒須 早苗(首都大学東京,特任研究員) |
タイトル | スペシャルケーラー多様体の非固有アファイン超球面による特徴付け |
場所 | 数学講究室(3040) |
アブストラクト | K. Abe "On a class of hypersurface of {R}^{n+1}" (Duke Math. J, \textbf{41} (1974), 865-874)により 「実$2m$次元完備ケーラー多様体から実ユークリッド空間への極小(多重調和(または$(1,1)$-geodesic))超曲面は$(2m-2)$柱状である.」 ことが知られている。 この結果を(パラ)複素多様体からのアファインはめ込みに対して一般化し得られた柱状定理について述べる。 |
日時 | 1月29日(木) 16:30~18:00 |
---|---|
講演者(所属) | Mark Hamilton ( Tokyo Univ. ) |
タイトル | Geometric quantization of integrable systems |
場所 | 数学講究室(3040) |
アブストラクト |
The theory of geometric quantization is one way of producing a "quantum system" from a "classical system," and has been studied a great deal over the past several decades. It also has surprising ties to
representation theory. However, despite this, there still does not exist a satisfactory theory of quantization for systems with singularities. Geometric quantization requires the choice of a polarization; when using a real polarization to quantize a regular enough manifold, a result of Sniatycki says that the quantization can be found by counting certain objects, called Bohr-Sommerfeld fibres. However, there are many types of systems to which this result does not apply. One such type is the class of completely integrable systems, which are examples coming from mechanics that have many nice properties, but which are nonetheless too singular for Sniatycki's theorem to apply. In this talk we will explore one approach to the quantization of integrable systems, and show a Sniatycki-type relationship to Bohr-Sommerfeld fibres. However, some surprising features appear, including infinite-dimensional contributions and strong dependence on the polarization. I will give at least a brief explanation of both geometric quantization and integrable systems, and hope to make the talk accessible to a general differential geometric audience. This is joint work with Eva Miranda. |
日時 | 1月28日(水) 14:40~16:10 |
---|---|
講演者(所属) | Haizhong Li ( Tsinghua University, Beijing, China ) |
タイトル | Willmore submanifolds in a Riemannian manifold |
場所 | 数学講究室(3040) |
アブストラクト | In this talk, we give a survey of geometry of Willmore submanifolds, which includes Willmore functional, Willmore conjecture, Willmore surfaces, Willmore hypersurfaces and Willmore submanifolds. |
日時 | 1月23日(金) 14:20~15:20 |
---|---|
講演者(所属) | 川上 裕(九州大学数理学研究院&大阪市立大学数学研究所) |
タイトル | Bloch原理と極小曲面のGauss写像の理論への応用 |
場所 | 数学講究室(3040) |
アブストラクト | 複素平面上の有理型関数が定数関数のみになるときの値域の状況と領域上の有理型関数の族が正規族になるときの値域の状況との間には非常に強い類似性が存在し,実際に「Bloch原理」と呼ばれる両者の関係を統一的に 説明する理論があります.Antonio Ros氏はそれを利用することで極小曲面のGauss写像の除外値問題における藤本の定理に幾何的に見通しのよい証明を与えることができました. 本講演では,微分幾何と複素解析の結び付きを示す具体例として,Ros氏によって得られたこの結果を歴史や背景などを交えてご紹介したいと思います. |
日時 | 1月23日(金) 13:15~14:15 |
---|---|
講演者(所属) | 黒須 早苗(首都大学東京,特任研究員) |
タイトル | (パラ-)複素多様体からのアファインはめ込みに対する柱状定理 |
場所 | 数学講究室(3040) |
アブストラクト | K. Abe "On a class of hypersurface of {R}^{n+1}" (Duke Math. J, \textbf{41} (1974), 865-874)により 「実$2m$次元完備ケーラー多様体から実ユークリッド空間への極小(多重調和(または$(1,1)$-geodesic))超曲面は$(2m-2)$柱状である.」 ことが知られている。 この結果を(パラ)複素多様体からのアファインはめ込みに対して一般化し得られた柱状定理について述べる。 |
日時 | 1月21日(水) 14:40~16:10 |
---|---|
講演者(所属) | 北川友美子(大阪市立大学数学研究所) |
タイトル | サブリーマン多様体上の測地線 |
場所 | 数学講究室(3040) |
アブストラクト | 滑らかな多様体上の接分布とその上のリーマンファイバー計量の組をサブリーマン多様体と呼びます.ここでいう接分布とは,接束の部分束を意味します. このリーマンファイバー計量はカルノカラテオドリー計量とも呼ばれ, 最適制御理論に関係しています.ここでは,接分布が bracket-generating である(すなわち,セクション達のブラケット積で接束全体を張る)と仮定します. 本講演では,サブリーマン多様体の測地線についてお話しします. |
日時 | 1月14日(水) 16:30~18:00 |
---|---|
講演者(所属) | 納谷 信(名古屋大学・大学院多元数理科学研究科) |
タイトル | 離散群の固定点性質と調和写像 |
場所 | 数学講究室(3040) |
アブストラクト |
離散群とは、可算無限個の元からなる群のことです。そのような群がある距離空間に距離を保って作用するとき、すべての元が空間のある1点を動かさないという現象がこの講演のテーマです。そのような現象は極めて特殊な状況と
いえますが、古典的にカズダンの性質(T)やマルグリスの超剛性定理において観察されてきました。 この講演では、離散群がある広いクラスの距離空間 (正確にいうと、CAT(0)空間とよばれるある意味で負に曲がった距離空間)に対して固定点性質をもつための十分条件や、ある種のランダム群がこの十分条件をみたすといったこと についてお話しします。 使われる手法は、微分幾何ではおなじみの調和写像の離散的な類似物です。 微分幾何・幾何解析のアイデアが離散群の研究に応用される様子も、時間のゆるす限りお話ししたいと思います。 |
日時 | 11月19日(水) 14:40~16:10 |
---|---|
講演者(所属) | 井口雄紀(金沢大学・大学院自然科学研究科) |
タイトル | タイヒミュラー測地線のサーストン境界における漸近的振る舞い |
場所 | 数学講究室(3040) |
アブストラクト | タイヒミュラー空間とは、リーマン面上の等角構造の強同値類全体の集合である。またこれは、リーマン面上の双曲計量の強同値類全体の集合と言い換えることができる。本講演では、タイヒミュラー空間にタイヒミュラー距離と呼ばれる 距離関数を導入し、サーストンによるタイヒミュラー空間のコンパクト化を紹介する。そして、タイヒミュラー空間内の(タイヒミュラー距離に関する)測地線をリーマン面上の非自明な正則二次微分で特徴付けて、その測地線のサーストン 境界付近での振る舞いを考察する。特に、サーストン境界上に収束しない測地線についてLenzhenの結果を紹介する。 |
日時 | 9月22日(月) 16:00~17:30 |
---|---|
講演者(所属) | Miguel Ortega Titos(スペイン・グラナダ大学) |
タイトル | Marginally trapped surfaces in Minkowski 4-space which are invariant by some isometry groups |
場所 | 数学講究室(3040) |
アブストラクト | Basically, marginally trapped surfaces in a Lorentzian manifold are those spacelike surfaces whose mean curvature vector is lightlike. These surfaces are interesting in Physics, since the boundary of a region of the Universe containing black holes are foliated by such surfaces, among many other properties. We pay attention to those marginally trapped surfaces which are invariant by some 1-dimensional isometry subgroups of O(4,1). Depending on the chosen group, we describe the surfaces whose mean curvature vector is either lightlike or zero, and we study classical geometric properties on them. |
日時 | 9月22日(月) 14:00~15:30 |
---|---|
講演者(所属) | Magdalena Caballero(スペイン・グラナダ大学) |
タイトル | A complete classification of rotational surfaces in L3 (the Lorentz-Minkowski 3-space) -Rotational Willmore surfaces in L3- |
場所 | 数学講究室(3040) |
アブストラクト | Although rotational surfaces in L3 have been widely considered in the literature, its complete classification has been avoided because of its difficulty. In the firs part of this talk a complete classification of rotational surfaces in L3 will be given. We will focus specially in the case with space-like axis, which is the most interesting and subtle. The method to study this surfaces is delicate and intricate, and it is based in a technique of surgery and gluing. This method will be illustrated with an algorithm to construct new examples. In the second part, we will obtain the rotational Willmore surfaces in L3. |
日時 | 7月22日(火) 14:40~16:10 |
---|---|
講演者(所属) | 土井 護(阪大・理) |
タイトル | 特別な閉微分形式をもつ多様体の貼り合わせ構成法とその応用について |
場所 | 数学講究室(3040) |
アブストラクト | 自明な標準束をもつ複素多様体やRicci曲率が消えているようなRiemann多様体などは, 特別な閉微分形式をもつということで特徴づけられる. この講演では, そのような多様体の中で, 自明な標準束をもつ複素曲面や Spin(7)多様体などを貼り合わせにより構成する方法と, その応用について紹介する. |
日時 | 7月16日(水) 14:40~16:10 |
---|---|
講演者(所属) | 大仁田義裕(大阪市立大学) |
タイトル | 等質等径超曲面のガウス像のハミルトン安定性について |
場所 | 数学講究室(3040) |
アブストラクト | 実空間形内の主曲率一定な超曲面は,微分幾何学において「等径超曲面」と呼ばれている。等径超曲面論は、Elie Cartan以来の長い歴史があり,今なお活発な研究がなされている。Muenznerの有名な結果により,標準 球面内の等径超曲面の異なる主曲率の個数 g は1,2,3,4,6でなければならないことが知られている。 複素2次超曲面は、階数2のコンパクトなエルミート対称空間典型的なものである。 球面内の超曲面幾何学と複素2次超曲面のラグランジュ部分多様体の関係が知られている。 標準球面内の等径超曲面のガウス写像の像は, 複素2次超曲面に埋め込まれたコンパクト極小ラグランジュ部分多様体の良いクラスを与える。今回のセミナーでは, 等質等径超曲面のガウス像として得られるコンパクト極小ラグランジュ部分多様体のハミルトン安定性について 議論する。さらに,この問題について馬 輝 副教授(北京・清華大学)との共同研究における最近の結果,特に,g=4におけるハミルトン安定な例とハミルトン非安定な例,について述べる。 |
日時 | 7月9日(水) 14:40~16:10 |
---|---|
講演者(所属) | 長友康行(九州大学・大学院数理学研究院) |
タイトル | グラスマン多様体の全測地的部分多様体 |
場所 | 数学講究室(3040) |
アブストラクト | グラスマン多様体内の全測地的部分多様体に対して既約型といわれる特別なクラスを定義し、その分類定理を紹介する。 このとき、ある積分公式が得られるが、その値は終集合であるグラスマン多様体の次元を決定するために 用いられる。 また、特に定義域が複素射影直線の場合には、充満な非分解型の全測地的部分多様体が既約型であることを、上述した定理と球関数の理論のベクトル束版を構築することにより示すことができる。 これにより、 複素射影直線の場合には全測地的部分多様体が決定できたことになる。 |
日時 | 6月18日(水) 14:40~16:10 |
---|---|
講演者(所属) | 鈴木 貴(大阪大学・大学院基礎工学研究科数理科学) |
タイトル | 拡散幾何と非線形解析に関する最近の話題-調和写像流・走化性方程式・リッチ曲率流・腫瘍成長モデル |
場所 | 数学講究室(3040) |
アブストラクト | 拡散幾何と非線形解析が扱う非線形問題は,その解析方法や現れる現象に違いがある一方で,思想的に共通するものが数多く見られる.本講演ではリッチ曲率流と関係する最近の解析的研究を動機として, Smoluchowski-Poisson方程式における質量の量子化を解説し,調和写像流・リッチ曲率流・血管新生方程式との類似性と相違性を明らかにする.また定常状態として直接関係する自己双対ゲージ理論・乱流平均場理論 についても簡単に述べる. |
日時 | 6月11日(水) 13:00~14:30 |
---|---|
講演者(所属) | 森山貴之(大阪大学・大学院理学研究科数学専攻) |
タイトル | Deformations of transverse Calabi-Yau structures on foliated manifolds |
場所 | 数学講究室(3040) |
アブストラクト | 葉層構造を持つ多様体において、その葉層に横断的な幾何構造の変形理論について述べる。特にその横断的な幾何構造が閉微分形式で与えられるとき、後藤による変形理論を用いて障害が消えるための条件を与える。 これにより横断的カラビ・ヤウ構造の変形は障害を持たない事が分かる。 |
日時 | 6月4日(水) 14:40~16:10 |
---|---|
講演者(所属) | 酒井洋範(首都大学東京 大学院理学研究科 数学専攻 大学院生D3) |
タイトル | Restoration of quantum orbifold cohomology from quantum D-modules |
場所 | 数学講究室(3040) |
アブストラクト | We study the D-module associated to the quantum orbifold cohomology of a weighted projective space (quantum D-module). We see how to restore the quantum orbifold cohomology from a quotient description of the quantum D-module. (Joint work with Martin Guest.). |
日時 | 5月21日(水) 14:40~16:10 |
---|---|
講演者(所属) | 佐官謙一(大阪市立大・理) |
タイトル | ユークリッド計量について調和な擬等角写像に関する漸近的にシャープな不等式について |
場所 | 数学講究室(3040) |
日時 | 5月14日(水) 14:40~16:10 |
---|---|
講演者(所属) | Oldrich Kowalski 教授(Charles 大学,チェコ) |
タイトル | On 3-dimensional Riemannian manifolds with prescribed Ricci eigenvalues |
場所 | 数学講究室(3040) |
アブストラクト | pdf file |
日時 | 5月7日(水) 16:30~18:00 |
---|---|
講演者(所属) | 服部広大(東大数理・D2) |
タイトル | 四元数ケーラー構造の剛性定理 |
場所 | 数学講究室(3040) |
アブストラクト | 四元数ケーラー構造は特殊なホロノミー群をもつリーマン計量の一種であり、またそのような構造をもつ多様体上ではツイスター理論を展開することができる。従って四元数ケーラー構造は、リーマン幾何と複素幾何のどちらから見ても 興味深い対象となっている。これまでに、ツイスター理論による複素幾何的な手法を使って四元数ケーラー構造の剛性定理が証明されている。今回は上記のタイプの定理を、ツイスター理論を使わずに、リーマン幾何の側面から証明 する。手法としては、後藤竜司氏による位相的キャリブレーションの理論と、本間泰史氏による四元数ケーラー多様体上のボホナー・ワイゼンベック公式を使う。 |
日時 | 4月16日(水) 14:40~16:10 |
---|---|
講演者(所属) | 浅田 明 |
タイトル | 正則化無限次元積分と無限次元トーラスでのフーリエ展開 |
場所 | 数学講究室(3040) |
アブストラクト |
作用素Gを固定してGの固有値をもちいたゼータ正則化によって無限次元積分を正則化する正則化無限次元積分の応用として、無限変数の周期関数(無限次元トーラス上の関数)のフーリエ展開が計算できることを話す。 この場合、周期は任意ではなくGの固有値で規制される。また周期から生成される格子はヒルベルト空間ではなく、それを1次元拡大した空間(デターミナントバンドルを付け加えた空間)で考える必要がある。トーラスの関数は3角 関数の有限積だけでなく無限積も加わった形で展開される。 時間があれば、この結果のヒルベルト空間の正則化ラプラシアンの境界値問題との関係についても話したい。 |