微分幾何学セミナー(2023年度)
大阪公立大学数学研究所(OCAMI) での事業の一環として、 (幾何解析、トポロジー、代数幾何、数理物理、可積分系、情報数理などにも関わる広い意味の)微分幾何学のセミナーを推進します。
微分幾何学セミナー(2023年度)講演一覧
日時 | 2024年2月5日(月)16:45-18:15 |
---|---|
講演者(所属) |
Haizhong Li (清華大学) |
タイトル | Curvature flows for hypersurfaces and their geometric applications |
場所 | 理学部F棟4階 中講究室(F415) |
アブストラクト |
Isoperimetric inequality is one of the oldest problems in mathematics, which relates with convex geometry, differential geometry and geometric PDEs, etc. Recently, the isoperimetric type inequalities in hyperbolic space have been widely investigated by using the hypersurface curvature flows, including the inverse curvature flows, quermassintegral preserving curvature flows, contracting curvature flows, and locally constrained curvature flows. In this talk, I will survey the recent progress in this direction, which is based on my joint works with Ben Andrews (ANU), Yong Wei (USTC), Changwei Xiong (SCU), Yingxiang Hu (Beihang U.). |
日時 | 2023年12月1日(金)16:45-18:15 |
---|---|
講演者(所属) |
青井 顕宏(和歌山工業高等専門学校) |
タイトル | ポアンカレ型定スカラー曲率ケーラー計量の錐的な近似とその代数幾何学的安定性について |
場所 | 第9講義室(杉本キャンパス理学部E棟1階,E101) |
アブストラクト |
複素多様体がいつ定スカラー曲率ケーラー計量(constant scalar curvature Kähler計量, cscK計量)をもつか, という問題は基本的かつ重要な問題である. 本講演では, ポアンカレ型cscK計量が, 錐的特異点と呼ばれる特異点を持つ非完備なcscK計量の極限として記述できる, という結果を紹介する. これはケーラー・アインシュタイン計量に関するGuenanciaの結果のcscK計量に対する類似である. この系として, 角度0に対するログK半安定性が従うことを説明し, 関連する話題についても触れる. |
日時 | 2023年11月10日(金)16:45-18:15 |
---|---|
講演者(所属) |
宮武 夏雄(東北大学数理科学共創社会センター) |
タイトル | 巡回Higgs束のHitchin方程式の劣調和関数を用いた拡張とそのDirichlet問題について |
場所 | 第10講義室(杉本キャンパス理学部E棟2階,E211) |
アブストラクト |
$X$を連結Riemann面, $K_X\rightarrow X$を$X$の標準束とします. 標準束の二乗根$K_X^{1/2}$を固定し, 階数$r$の$X$上の正則ベクトル束$E$を$E \coloneqq \bigoplus_{j=1}^r K_X^{(r-(2j-1))/2}$と定めます. 各$q \in H^0(K_X^r)$に対し, ${\rm End} E$に値をとる正則一形式$\Phi(q) \in H^0({\rm End} E\otimes K_X)$を自然に定めることができます. この組$(E, \Phi(q))$を巡回Higgs束(cyclic Higgs bundle) と呼びます. また巡回Higgs束のHitchin方程式と呼ばれる, $E$上のHermite計量$h = (h_1, \dots, h_r)$に対する二階の楕円型方程式を$\Phi(q)$を用いて定義することができます. その解から, $X$の普遍被覆空間から${\rm SL}(r,{\mathbb C})/{\rm SU}(r)$への調和写像が構成されます. 本講演では, $q_N \in H^0((K_X^r)^N)$に付随する多価切断$q_N^{1/N}$に対する巡回Higgs束とそのHitchin方程式, というものを導入します. さらに, Hitchin方程式の解と解から構成される種々の量は$N\to\infty$の極限で漸近的にどのように振舞うだろうかという問題を提起し, この問題を動機として, 巡回Higgs束のHitchin方程式の劣調和関数を用いた拡張, というものを導入します. その拡張された方程式に対するDirichlet問題の解の存在と一意性が本講演における主定理です. |
日時 | 2023年11月9日(木)13:30-14:30 |
---|---|
講演者(所属) |
Michael Pevzner (Reims 大学) |
タイトル | Generating operators for symmetry breaking |
場所 | 理学部E棟 大講究室(E408室) |
アブストラクト |
We introduce the notion of "generating operator" for a family of differential operators between two manifolds and develop this construction in the framework of covariant differential operators acting on sections of holomorphic vector bundles over homogeneous spaces. An explicit formula for the generating operator associated with the Rankin--Cohen brackets will be discussed. |
日時 | 2023年10月27日(金)16:45-18:15 |
---|---|
講演者(所属) |
橋本 義規(大阪公立大学) |
タイトル | 冪零リー群上の左不変リッチソリトンについてのHilbert-Mumford基準 |
場所 | 第9講義室(杉本キャンパス理学部E棟1階,E101) |
アブストラクト |
冪零リー群上に左不変リッチソリトンがいつ存在するかは,非コンパクトなアインシュタイン空間の分類とも関わる重要な問題であり,盛んに研究されている.本講演では,幾何学的不変式論におけるHilbert-Mumford基準の類似を用いて,冪零リー群上に左不変リッチソリトンが存在する必要十分条件を代数的不変量によって与える.その応用として,nice basisを持つ冪零リー環について知られていたNikolayevskyの基準を一般化し,ソリトンの非存在に関する武富・田丸予想の修正版を導く. |
日時 | 2023年7月21日(金)16:00-17:00 |
---|---|
講演者(所属) |
林 正人(名古屋大学・香港中文大学) |
タイトル | Iterative minimization algorithm on mixture family |
場所 | 理学部F棟4階 小講究室A(F404) |
アブストラクト |
Iterative minimization algorithms appear in various areas including machine learning, neural network, and information theory. The em algorithm is one of the famous iterative minimization algorithms in the former area, and Arimoto-Blahut algorithm is a typical iterative algorithm in the latter area. |
日時 | 2023年7月4日(火)16:30-18:00 |
---|---|
講演者(所属) |
小林 和志(三重大学) |
タイトル | あるgerbeによる複素トーラスの変形とホモロジー的ミラー対称性 |
場所 | 理学部F棟4階 中講究室(F415) |
アブストラクト |
ホモロジー的ミラー対称性により, シンプレクティックトーラス内のラグランジュ部分多様体とその上のユニタリ局所系から成るある組に対し, ミラー双対な複素トーラス上定義された可積分接続付きのある種の正則直線束が対応すると考えられている. |
日時 | 2023年6月30日(金)17:15-18:15(杉本代数セミナー終了後) |
---|---|
講演者(所属) |
村上 怜(東北大学) |
タイトル | ファイバー空間上のJ方程式 |
場所 | 理学部E棟4階 大講究室(E408) |
アブストラクト | Kahler幾何において,定スカラー曲率Kahler計量(cscK計量)の存在問題は一つの中心的問題である. Dervan-Sektnanは,正則沈め込みの全空間上で,底空間とファイブレーションでの適切な仮定の下,cscK計量の存在を示した.またJ-方程式とは,cscK計量の存在問題の研究においてS.K.DonaldsonとX.X.Chenにより導入された偏微分方程式である.ある条件下ではJ-方程式の解の存在はcscK計量の存在を意味するなど標準計量と関係があり注目されている.本講演では,J-方程式に関するDervan-Sektnan型の結果が得られたのでそれを紹介する. |
日時 | 2023年6月16日(金)16:30-18:00(日本時間) |
---|---|
講演者(所属) |
濱中 翔太(三菱電機株式会社 先端技術総合研究所) |
タイトル | 全スカラー曲率に対する極限定理 |
場所 | 理学部F棟4階 小講究室A(F404) |
アブストラクト | Gromovは,リーマン多様体上のスカラー曲率の下からのバウンドが計量のC^0級の収束の下で保たれることを示した. 本講演では,その全スカラー曲率版に関する幾つかの結果を紹介する. またこれと併せて,全スカラー曲率の上からのバウンドの保存性についても紹介する. この講演は講演者のarXivプレプリント 2208.01865,及び 2301.05444 に基づく. |
日時 | 2023年5月12日(金)16:30-18:00(日本時間) |
---|---|
講演者(所属) |
Tomás Otero (CITMAga - Universidade de Santiago de Compostela) |
タイトル |
Cohomogeneity one actions on symmetric spaces |
場所 | 理学部F棟4階 小講究室A(F404) |
アブストラクト |
An isometric action on a Riemannian manifold is of cohomogeneity one if the minimum codimension of its orbits is one or, equivalently, it has hypersurfaces as its regular orbits. While the classification of homogeneous hypersurfaces in real hyperbolic spaces follows from Cartan's classical work on isoparametric hypersurfaces, obtaining similar results for other symmetric spaces of noncompact type has proven to be difficult: For example, it was not until recently that the classification of homogeneous hypersurfaces on the quaternionic hyperbolic spaces was obtained. In noncompact symmetric spaces of higher rank, several structural results by J. Berndt and H. Tamaru allowed to obtain similar classifications, but only for certain irreducible spaces of rank two. In this talk I will report on the state of the classification of cohomogeneity one actions in symmetric spaces focusing on the case of symmetric spaces of noncompact type. Recently, in a joint work with J. Carlos Díaz-Ramos and Miguel Domínguez-Váquez we have proposed a generalized procedure for the classification of such actions on a given symmetric space of noncompact type. This allowed us to produce the first classification result of homogeneous hypersurfaces in a space of rank > 2, namely on the spaces SL(n,R)/SO(n). |
微分幾何学セミナー(2023年度)主催者
連絡先 | Tel | |
---|---|---|
田丸 博士 | 06-6605-2615 | tamaru [at] omu.ac.jp |
石田 裕昭 | hiroaki.ishida [at] omu.ac.jp | |
加藤 信 | 06-6605-2616 | shinkato [at] omu.ac.jp |
小池 貴之 | tkoike [at] omu.ac.jp | |
田中 潮 | utanaka [at] omu.ac.jp | |
橋本 義規 | yhashimoto [at] omu.ac.jp | |
橋本 要 | h-kaname [at] sci.osaka-cu.ac.jp |